Bioceramic Composites

Biomaterials—the materials used for the manufacturing of medical devices— are part of everyday life. Each one of us has likely had the experience of visting a dentist’s office, where a number of biomaterials are used temporarily or permanently in the mouth. Devices that are more complex are used for...

Full description

Saved in:
Bibliographic Details
HerausgeberIn:
Sonstige:
Year of Publication:2022
Language:English
Physical Description:1 electronic resource (228 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04987nam-a2200913z--4500
001 993545372204498
005 20240612200341.0
006 m o d
007 cr|mn|---annan
008 202205s2022 xx |||||o ||| 0|eng d
035 |a (CKB)5680000000037549 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/81031 
035 |a (EXLCZ)995680000000037549 
041 0 |a eng 
100 1 |a Piconi, Corrado  |4 edt 
245 1 0 |a Bioceramic Composites 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (228 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 |a Open access  |f Unrestricted online access  |2 star 
520 |a Biomaterials—the materials used for the manufacturing of medical devices— are part of everyday life. Each one of us has likely had the experience of visting a dentist’s office, where a number of biomaterials are used temporarily or permanently in the mouth. Devices that are more complex are used for to support, heal, or replace living tissues or organs in the body that are suffering or compromised by different conditions. The materials used in their construction are metals and metallic alloys, polymers—ranging from elastomers to adhesives—and ceramics.Within these three cases, there are materials that are inert in the living environment, that perform an active function, or that are dissolved and resorbed by the metabolic pathways. Biomaterials are the outcome of a dynamic field of research that is driven by a growing demand and by the competition among the manufacturers of medical devices, with innovations improving the performance of existing devices and that contribute to the development of new ones. The collection of papers forming this volume have one particular class of of biomaterial in common, ceramic (bioceramic) composites, which as so far been used in applications such as orthopaedic joint replacement as well as in dental implants and restorations and that is being intensively investigated for bone regeneration applications. Today’s bioceramic composites (alumina–zirconia) are the golden standard in joint replacements. Several manufracturers have proposed different zirconia–alumina composites for use in hip, knee, and shoulder joint replacements, with several other innovative devices also being under study. In addition, bioceramic composites with innovative compositions are under development and will be on the market in years to come. Something that is especially interesting is the application of bioceramic composites in the regeneration of bone tissues. Research has devoted special attention to the doping of well-known materials (i.e., calcium phosphates and silicates) with bioactive ions, aiming to enhance the osteogenic ability and bioresorbability of man-made grafts. Moreover, high expectations rely on hybrid biopolymer/ceramic materials that mimic the complex composition and multiscale structure of bone tissue. 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a biomaterials 
653 |a bone grafts 
653 |a bone repair 
653 |a dental implants 
653 |a scaffolds 
653 |a alumina 
653 |a zirconia 
653 |a Alumina-Toughened Zirconia 
653 |a Zirconia-Toughened Alumina 
653 |a hip arthroplasty 
653 |a calcium phosphates 
653 |a hydroxyapatite 
653 |a bone cements 
653 |a bioactive composites 
653 |a bone regeneration 
653 |a zirconia-alumina composite 
653 |a stabilizing oxides 
653 |a critical grain size 
653 |a tetragonality 
653 |a mechanical properties 
653 |a fracture toughness 
653 |a flexural strength 
653 |a ceramic additive manufacturing 
653 |a DLP 
653 |a bioceramics 
653 |a calcium phosphate 
653 |a carbon fibers 
653 |a mineralization 
653 |a zirconia-toughened alumina 
653 |a phase transformation 
653 |a Raman spectroscopy 
653 |a calcium-based biomineralization 
653 |a hydroxyapatite nanoparticles 
653 |a biomimicry 
653 |a multifunctional materials 
653 |a Freeze Foam 
653 |a hybrid bone 
653 |a biocompatibility 
653 |a bone replacement 
653 |a transformation toughening 
653 |a platelet reinforcement 
653 |a hip 
653 |a alumina matrix composite 
653 |a AMC 
653 |a hip prosthesis 
653 |a prosthesis 
653 |a case series 
653 |a ceramic-on-ceramic 
776 |z 3-0365-3633-7 
776 |z 3-0365-3634-5 
700 1 |a Sprio, Simone  |4 edt 
700 1 |a Piconi, Corrado  |4 oth 
700 1 |a Sprio, Simone  |4 oth 
906 |a BOOK 
ADM |b 2024-06-13 00:38:34 Europe/Vienna  |f system  |c marc21  |a 2022-05-14 21:41:54 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5337904220004498&Force_direct=true  |Z 5337904220004498  |b Available  |8 5337904220004498