High-Efficiency Crystalline Silicon Solar Cells

This book is composed of 6 papers. The first paper reports a novel technique for the selective emitter formation by controlling the surface morphology of Si wafers. Selective emitter (SE) technology has attracted renewed attention in the Si solar cell industry to achieve an improved conversion effic...

Full description

Saved in:
Bibliographic Details
HerausgeberIn:
Sonstige:
Year of Publication:2021
Language:English
Physical Description:1 electronic resource (90 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993545240904498
ctrlnum (CKB)5400000000040632
(oapen)https://directory.doabooks.org/handle/20.500.12854/68267
(EXLCZ)995400000000040632
collection bib_alma
record_format marc
spelling Cho, Eun-Chel edt
High-Efficiency Crystalline Silicon Solar Cells
Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
1 electronic resource (90 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
This book is composed of 6 papers. The first paper reports a novel technique for the selective emitter formation by controlling the surface morphology of Si wafers. Selective emitter (SE) technology has attracted renewed attention in the Si solar cell industry to achieve an improved conversion efficiency of passivated-emitter rear-contact (PERC) cells. In the second paper, the temperature dependence of the parameters was compared through the PERC of the industrial-scale solar cells. As a result of their analysis, PERC cells showed different temperature dependence for the fill factor loss as temperatures rose. The third paper reports the effects of carrier selective front contact layer and defect state of hydrogenated amorphous silicon passivation layer/n-type crystalline silicon interface. The results demonstrated the effects of band offset determined by band bending at the interface of the passivation layer and carrier selective front contact layer. In addition, the nc-SiOx: H CSFC layer not only reduces parasitic absorption loss but also has a tunneling effect and field-effect passivation. The fourth paper reports excimer laser annealing of hydrogenated amorphous silicon film for TOPCon solar cell application. This paper analyzes the crystallization of a-Si:H via excimer laser annealing (ELA) and compared this process with conventional thermal annealing. The fifth paper reports the contact mechanism between Ag–Al and Si and the change in contact resistance (Rc) by varying the firing profile. Rc was measured by varying the belt speed and peak temperature of the fast-firing furnace. The sixth paper reports a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model.
English
History of engineering & technology bicssc
fill factor loss analysis
double-diode model
PERC
temperature dependence
recombination current density
parasitic resistance
carrier selective contact
rear emitter heterojunction
passivation
crystallinity
thermal annealing
excimer laser annealing
amorphous hydrogenated silicon film
metallization
contact formation
Ag/Al paste
p+ emitter
N-type bifacial solar cells
silicon tandem heterojunction solar cell
N-doped Cu2O absorber layer
Al:ZnO (AZO)
numerical electro-optical modeling
scanning electron microscopy (SEM)
atomic force microscopy (AFM)
X-ray diffraction (XRD)
spectroscopic ellipsometry (SE)
Fourier-transform infrared (FTIR) spectroscopy
degradation degree
failure rate
selective emitter
surface morphology
doping process
solar cell
3-03943-629-5
3-03943-630-9
Lee, Hae-Seok edt
Cho, Eun-Chel oth
Lee, Hae-Seok oth
language English
format eBook
author2 Lee, Hae-Seok
Cho, Eun-Chel
Lee, Hae-Seok
author_facet Lee, Hae-Seok
Cho, Eun-Chel
Lee, Hae-Seok
author2_variant e c c ecc
h s l hsl
author2_role HerausgeberIn
Sonstige
Sonstige
title High-Efficiency Crystalline Silicon Solar Cells
spellingShingle High-Efficiency Crystalline Silicon Solar Cells
title_full High-Efficiency Crystalline Silicon Solar Cells
title_fullStr High-Efficiency Crystalline Silicon Solar Cells
title_full_unstemmed High-Efficiency Crystalline Silicon Solar Cells
title_auth High-Efficiency Crystalline Silicon Solar Cells
title_new High-Efficiency Crystalline Silicon Solar Cells
title_sort high-efficiency crystalline silicon solar cells
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2021
physical 1 electronic resource (90 p.)
isbn 3-03943-629-5
3-03943-630-9
illustrated Not Illustrated
work_keys_str_mv AT choeunchel highefficiencycrystallinesiliconsolarcells
AT leehaeseok highefficiencycrystallinesiliconsolarcells
status_str n
ids_txt_mv (CKB)5400000000040632
(oapen)https://directory.doabooks.org/handle/20.500.12854/68267
(EXLCZ)995400000000040632
carrierType_str_mv cr
is_hierarchy_title High-Efficiency Crystalline Silicon Solar Cells
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
_version_ 1796652254880595968
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04211nam-a2200709z--4500</leader><controlfield tag="001">993545240904498</controlfield><controlfield tag="005">20231214133022.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202105s2021 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5400000000040632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/68267</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995400000000040632</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cho, Eun-Chel</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Efficiency Crystalline Silicon Solar Cells</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Basel, Switzerland</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (90 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is composed of 6 papers. The first paper reports a novel technique for the selective emitter formation by controlling the surface morphology of Si wafers. Selective emitter (SE) technology has attracted renewed attention in the Si solar cell industry to achieve an improved conversion efficiency of passivated-emitter rear-contact (PERC) cells. In the second paper, the temperature dependence of the parameters was compared through the PERC of the industrial-scale solar cells. As a result of their analysis, PERC cells showed different temperature dependence for the fill factor loss as temperatures rose. The third paper reports the effects of carrier selective front contact layer and defect state of hydrogenated amorphous silicon passivation layer/n-type crystalline silicon interface. The results demonstrated the effects of band offset determined by band bending at the interface of the passivation layer and carrier selective front contact layer. In addition, the nc-SiOx: H CSFC layer not only reduces parasitic absorption loss but also has a tunneling effect and field-effect passivation. The fourth paper reports excimer laser annealing of hydrogenated amorphous silicon film for TOPCon solar cell application. This paper analyzes the crystallization of a-Si:H via excimer laser annealing (ELA) and compared this process with conventional thermal annealing. The fifth paper reports the contact mechanism between Ag–Al and Si and the change in contact resistance (Rc) by varying the firing profile. Rc was measured by varying the belt speed and peak temperature of the fast-firing furnace. The sixth paper reports a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">History of engineering &amp; technology</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fill factor loss analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">double-diode model</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PERC</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">temperature dependence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">recombination current density</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">parasitic resistance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">carrier selective contact</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">rear emitter heterojunction</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">passivation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">crystallinity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">thermal annealing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">excimer laser annealing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">amorphous hydrogenated silicon film</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">metallization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">contact formation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ag/Al paste</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">p+ emitter</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">N-type bifacial solar cells</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">silicon tandem heterojunction solar cell</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">N-doped Cu2O absorber layer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Al:ZnO (AZO)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">numerical electro-optical modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">scanning electron microscopy (SEM)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">atomic force microscopy (AFM)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">X-ray diffraction (XRD)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">spectroscopic ellipsometry (SE)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fourier-transform infrared (FTIR) spectroscopy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">degradation degree</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">failure rate</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">selective emitter</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">surface morphology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">doping process</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">solar cell</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03943-629-5</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03943-630-9</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Hae-Seok</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cho, Eun-Chel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Hae-Seok</subfield><subfield code="4">oth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:39:40 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2022-04-04 09:22:53 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337884860004498&amp;Force_direct=true</subfield><subfield code="Z">5337884860004498</subfield><subfield code="b">Available</subfield><subfield code="8">5337884860004498</subfield></datafield></record></collection>