Modeling of the Phase Change Material of a Hybrid Storage using the Finite Element Method

To increase the efficiency of energy-intensive industrial processes, thermal energy storages can offer new possibilities. In recent years, especially latent heat thermal energy storages, exploiting the high energy density of phase change material (PCM), are becoming widely applied in industry. A nov...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (149 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993545009704498
ctrlnum (CKB)5590000000501176
(oapen)https://directory.doabooks.org/handle/20.500.12854/70832
(EXLCZ)995590000000501176
collection bib_alma
record_format marc
spelling Kasper, Lukas auth
Modeling of the Phase Change Material of a Hybrid Storage using the Finite Element Method
Vienna TU Wien Academic Press 2020
1 electronic resource (149 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
To increase the efficiency of energy-intensive industrial processes, thermal energy storages can offer new possibilities. In recent years, especially latent heat thermal energy storages, exploiting the high energy density of phase change material (PCM), are becoming widely applied in industry. A novel approach is investigated in the project HyStEPs, funded by the Austrian Research Promotion Agency (FFG) with grant number 868842. In this concept, containers filled with PCM are placed at the shell surface of a Ruths steam storage, to increase storage efficiency. In this work, a two-dimensional model using the finite element method is developed to simulate the PCM of the hybrid storage as designed in the HyStEPs project. The apparent heat capacity method is applied in a MATLAB implementation, considering heat transfer by both conduction and natural convection. This successfully validated code can handle any desired layout of materials arranged on a rectangular domain. Furthermore, a parameter study of different dimensions and orientations of the PCM cavity was conducted. The impact of natural convection was found to lead to significantly varying behaviour of the studied cavities with different orientation during the charging process, while it was found to be negligible during the discharging process.
English
Energy conversion & storage bicssc
Heat transfer processes bicssc
Thermodynamics & heat bicssc
Computer modelling & simulation bicssc
latent heat storage
hybrid storage
finite element method
phase change
numerical modeling
3-85448-037-7
language English
format eBook
author Kasper, Lukas
spellingShingle Kasper, Lukas
Modeling of the Phase Change Material of a Hybrid Storage using the Finite Element Method
author_facet Kasper, Lukas
author_variant l k lk
author_sort Kasper, Lukas
title Modeling of the Phase Change Material of a Hybrid Storage using the Finite Element Method
title_full Modeling of the Phase Change Material of a Hybrid Storage using the Finite Element Method
title_fullStr Modeling of the Phase Change Material of a Hybrid Storage using the Finite Element Method
title_full_unstemmed Modeling of the Phase Change Material of a Hybrid Storage using the Finite Element Method
title_auth Modeling of the Phase Change Material of a Hybrid Storage using the Finite Element Method
title_new Modeling of the Phase Change Material of a Hybrid Storage using the Finite Element Method
title_sort modeling of the phase change material of a hybrid storage using the finite element method
publisher TU Wien Academic Press
publishDate 2020
physical 1 electronic resource (149 p.)
isbn 3-85448-037-7
illustrated Not Illustrated
work_keys_str_mv AT kasperlukas modelingofthephasechangematerialofahybridstorageusingthefiniteelementmethod
status_str n
ids_txt_mv (CKB)5590000000501176
(oapen)https://directory.doabooks.org/handle/20.500.12854/70832
(EXLCZ)995590000000501176
carrierType_str_mv cr
is_hierarchy_title Modeling of the Phase Change Material of a Hybrid Storage using the Finite Element Method
_version_ 1796651990265102337
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02482nam-a2200361z--4500</leader><controlfield tag="001">993545009704498</controlfield><controlfield tag="005">20231214133522.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202106s2020 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5590000000501176</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/70832</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995590000000501176</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kasper, Lukas</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling of the Phase Change Material of a Hybrid Storage using the Finite Element Method</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Vienna</subfield><subfield code="b">TU Wien Academic Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (149 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To increase the efficiency of energy-intensive industrial processes, thermal energy storages can offer new possibilities. In recent years, especially latent heat thermal energy storages, exploiting the high energy density of phase change material (PCM), are becoming widely applied in industry. A novel approach is investigated in the project HyStEPs, funded by the Austrian Research Promotion Agency (FFG) with grant number 868842. In this concept, containers filled with PCM are placed at the shell surface of a Ruths steam storage, to increase storage efficiency. In this work, a two-dimensional model using the finite element method is developed to simulate the PCM of the hybrid storage as designed in the HyStEPs project. The apparent heat capacity method is applied in a MATLAB implementation, considering heat transfer by both conduction and natural convection. This successfully validated code can handle any desired layout of materials arranged on a rectangular domain. Furthermore, a parameter study of different dimensions and orientations of the PCM cavity was conducted. The impact of natural convection was found to lead to significantly varying behaviour of the studied cavities with different orientation during the charging process, while it was found to be negligible during the discharging process.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Energy conversion &amp; storage</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat transfer processes</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermodynamics &amp; heat</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer modelling &amp; simulation</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">latent heat storage</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hybrid storage</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">finite element method</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">phase change</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">numerical modeling</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-85448-037-7</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:56:28 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2021-07-03 22:25:50 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337765530004498&amp;Force_direct=true</subfield><subfield code="Z">5337765530004498</subfield><subfield code="b">Available</subfield><subfield code="8">5337765530004498</subfield></datafield></record></collection>