Site-Specific Nutrient Management

The concept of nitrogen gap (NG), i.e., its recognition and amelioration, forms the core of this book entitled Site-Specific Nutrient Management (SSNM). Determination of the presence of an NG between fields on a farm and/or within a particular field, together with its size, requires a set of highly...

Full description

Saved in:
Bibliographic Details
Sonstige:
Year of Publication:2022
Language:English
Physical Description:1 electronic resource (224 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05908nam-a2201213z--4500
001 993544957804498
005 20231214133156.0
006 m o d
007 cr|mn|---annan
008 202205s2022 xx |||||o ||| 0|eng d
035 |a (CKB)5680000000037791 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/81227 
035 |a (EXLCZ)995680000000037791 
041 0 |a eng 
100 1 |a Grzebisz, Witold  |4 edt 
245 1 0 |a Site-Specific Nutrient Management 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (224 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a The concept of nitrogen gap (NG), i.e., its recognition and amelioration, forms the core of this book entitled Site-Specific Nutrient Management (SSNM). Determination of the presence of an NG between fields on a farm and/or within a particular field, together with its size, requires a set of highly reliable diagnostic tools. The necessary set of diagnostic tools, based classically on pedological and agrochemical methods, should be currently supported by remote-sensing methods. A combination of these two groups of methods is the only way to recognize the factors responsible for yield gap (YG) appearance and to offer a choice of measures for its effective amelioration. The NG concept is discussed in the two first papers (Grzebisz and Łukowiak, Agronomy 2021, 11, 419; Łukowiak et al., Agronomy 2020, 10, 1959). Crop productivity depends on a synchronization of plant demand for nitrogen and its supply from soil resources during the growing season. The action of nitrate nitrogen (N–NO3), resulting in direct plant crop response, can be treated by farmers as a crucial growth factor. The expected outcome also depends on the status of soil fertility factors, including pools of available nutrients and the activity of microorganisms. Three papers are devoted to these basic aspects of soil fertility management (Sulewska et al., Agronomy 2020, 10, 1958; Grzebisz et al., Agronomy 2020, 10, 1701; Hlisnikovsky et al., Agronomy 2021, 11, 1333). The resistance of a currently cultivated crop to seasonal weather variability depends to a great extent on the soil fertility level. This aspect is thoroughly discussed for three distinct soil types and climates with respect to their impact on yield (Hlisnikovsky et al., Agronomy 2020, 10, 1160—Czech Republic; Wang et al., Agronomy 2020, 10, 1237—China; Łukowiak and Grzebisz et al., Agronomy 2020, 10, 1364—Poland). In the fourth section of this book, the division a particular field into homogenous production zones is discussed as a basis for effective nitrogen management within the field. This topic is presented for different regions and crops (China, Poland, and the USA) (Cammarano et al., Agronomy 2020, 10, 1767; Panek et al., Agronomy 2020, 10, 1842; Larson et al., Agronomy 2020, 10, 1858). 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Biology, life sciences  |2 bicssc 
650 7 |a Technology, engineering, agriculture  |2 bicssc 
653 |a Triticum aestivum L. 
653 |a farmyard manure 
653 |a mineral fertilizers 
653 |a crude protein content 
653 |a soil properties, site-specific requirements 
653 |a yield 
653 |a site-specific nitrogen management 
653 |a regional optimal nitrogen management 
653 |a net return 
653 |a nitrogen use efficiency 
653 |a spatial variability 
653 |a temporal variability 
653 |a seed density 
653 |a N uptake 
653 |a indices of N productivity 
653 |a mineral N 
653 |a indigenous Nmin at spring 
653 |a post-harvest Nmin 
653 |a N balance 
653 |a N efficiency 
653 |a maximum photochemical efficiency of photosystem II 
653 |a chlorophyll content index 
653 |a soil enzymatic activity 
653 |a biological index fertility 
653 |a nitrogenase activity 
653 |a microelements fertilization (Ti 
653 |a Si 
653 |a B 
653 |a Mo 
653 |a Zn) 
653 |a soil 
653 |a nitrate nitrogen content 
653 |a contents of available phosphorus 
653 |a potassium 
653 |a magnesium 
653 |a calcium 
653 |a cardinal stages of WOSR growth 
653 |a PCA 
653 |a site-specific nutrient management 
653 |a soil brightness 
653 |a satellite remote sensing 
653 |a crop yield 
653 |a soil fertility 
653 |a winter wheat 
653 |a winter triticale 
653 |a vegetation indices 
653 |a NDVI 
653 |a grain yield 
653 |a number of spikes 
653 |a economics 
653 |a normalized difference vegetation index (NDVI) 
653 |a on-the-go sensors 
653 |a winter oilseed rape → winter triticale cropping sequence 
653 |a N input 
653 |a N total uptake 
653 |a N gap 
653 |a Beta vulgaris L. 
653 |a organic manure 
653 |a weather conditions 
653 |a soil chemistry 
653 |a sugar concentration 
653 |a climatic potential yield 
653 |a yield gap 
653 |a soil constraints 
653 |a subsoil 
653 |a remote sensing-techniques 
653 |a field 
653 |a a field 
653 |a crop production 
653 |a sustainability 
653 |a homogenous productivity units 
653 |a nitrogen indicators: in-season 
653 |a spatial 
653 |a vertical variability of N demand and supply 
653 |a spectral imagery 
776 |z 3-0365-1344-2 
776 |z 3-0365-1343-4 
700 1 |a Grzebisz, Witold  |4 oth 
906 |a BOOK 
ADM |b 2023-12-15 05:45:39 Europe/Vienna  |f system  |c marc21  |a 2022-05-14 21:41:54 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5337769630004498&Force_direct=true  |Z 5337769630004498  |b Available  |8 5337769630004498