Micro/Nano Devices for Blood Analysis

The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2019
Language:English
Physical Description:1 electronic resource (174 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993544284604498
ctrlnum (CKB)4100000010106319
(oapen)https://directory.doabooks.org/handle/20.500.12854/53381
(EXLCZ)994100000010106319
collection bib_alma
record_format marc
spelling Minas, Graça auth
Micro/Nano Devices for Blood Analysis
MDPI - Multidisciplinary Digital Publishing Institute 2019
1 electronic resource (174 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there has been a notably fast development in the miniaturization of mechanical microdevices, later known as microelectromechanical systems (MEMS), which combine electrical and mechanical components at a microscale level. The integration of microflow and optical components in MEMS microdevices, as well as the development of micropumps and microvalves, have promoted the interest of several research fields dealing with fluid flow and transport phenomena happening in microscale devices. Microfluidic systems have many advantages over their macroscale counterparts, offering the ability to work with small sample volumes, providing good manipulation and control of samples, decreasing reaction times, and allowing parallel operations in one single step. As a consequence, microdevices offer great potential for the development of portable and point-of-care diagnostic devices, particularly for blood analysis. Moreover, the recent progress in nanotechnology has contributed to its increasing popularity, and has expanded the areas of application of microfluidic devices, including in the manipulation and analysis of flows on the scale of DNA, proteins, and nanoparticles (nanoflows). In this Special Issue, we invited contributions (original research papers, review articles, and brief communications) that focus on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis, micro- and nanofluidics, technologies for flow visualization, MEMS, biochips, and lab-on-a-chip devices and their application to research and industry. We hope to provide an opportunity to the engineering and biomedical community to exchange knowledge and information and to bring together researchers who are interested in the general field of MEMS and micro/nanofluidics and, especially, in its applications to biomedical areas.
English
red blood cells
metastatic potential
microfluidic devices
microstructure
lens-less
regression analysis
power-law fluid
narrow rectangular microchannel
biomedical coatings
XTC-YF cells
red blood cell (RBC) aggregation
Y-27632
finite element method
POCT
CEA detection
immersed boundary method
suspension
particle tracking velocimetry
biomicrofluidics
computational fluid dynamics
red blood cells (RBCs)
modified conventional erythrocyte sedimentation rate (ESR) method
computational biomechanics
RBC aggregation index
microfabrication
microfluidics
morphological analysis
chronic renal disease
multiple microfluidic channels
centrifugal microfluidic device
deformability
master molder using xurography technique
fluorescent chemiluminescence
hydrophobic dish
pressure-driven flow
cell deformability
mechanophenotyping
separation and sorting techniques
density medium
cell adhesion
polymers
rheology
circular microchannel
blood on chips
multinucleated cells
velocity
cell analysis
microfluidic chip
twin-image removal
cancer
Lattice-Boltzmann method
diabetes
hyperbolic microchannel
3-03921-824-7
Catarino, Susana auth
Lima, Rui A. auth
language English
format eBook
author Minas, Graça
spellingShingle Minas, Graça
Micro/Nano Devices for Blood Analysis
author_facet Minas, Graça
Catarino, Susana
Lima, Rui A.
author_variant g m gm
author2 Catarino, Susana
Lima, Rui A.
author2_variant s c sc
r a l ra ral
author_sort Minas, Graça
title Micro/Nano Devices for Blood Analysis
title_full Micro/Nano Devices for Blood Analysis
title_fullStr Micro/Nano Devices for Blood Analysis
title_full_unstemmed Micro/Nano Devices for Blood Analysis
title_auth Micro/Nano Devices for Blood Analysis
title_new Micro/Nano Devices for Blood Analysis
title_sort micro/nano devices for blood analysis
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2019
physical 1 electronic resource (174 p.)
isbn 3-03921-825-5
3-03921-824-7
illustrated Not Illustrated
work_keys_str_mv AT minasgraca micronanodevicesforbloodanalysis
AT catarinosusana micronanodevicesforbloodanalysis
AT limaruia micronanodevicesforbloodanalysis
status_str n
ids_txt_mv (CKB)4100000010106319
(oapen)https://directory.doabooks.org/handle/20.500.12854/53381
(EXLCZ)994100000010106319
carrierType_str_mv cr
is_hierarchy_title Micro/Nano Devices for Blood Analysis
author2_original_writing_str_mv noLinkedField
noLinkedField
_version_ 1787548505490849793
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04941nam-a2200925z--4500</leader><controlfield tag="001">993544284604498</controlfield><controlfield tag="005">20231214133246.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202102s2019 xx |||||o ||| 0|eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3-03921-825-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4100000010106319</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/53381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994100000010106319</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Minas, Graça</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Micro/Nano Devices for Blood Analysis</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (174 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there has been a notably fast development in the miniaturization of mechanical microdevices, later known as microelectromechanical systems (MEMS), which combine electrical and mechanical components at a microscale level. The integration of microflow and optical components in MEMS microdevices, as well as the development of micropumps and microvalves, have promoted the interest of several research fields dealing with fluid flow and transport phenomena happening in microscale devices. Microfluidic systems have many advantages over their macroscale counterparts, offering the ability to work with small sample volumes, providing good manipulation and control of samples, decreasing reaction times, and allowing parallel operations in one single step. As a consequence, microdevices offer great potential for the development of portable and point-of-care diagnostic devices, particularly for blood analysis. Moreover, the recent progress in nanotechnology has contributed to its increasing popularity, and has expanded the areas of application of microfluidic devices, including in the manipulation and analysis of flows on the scale of DNA, proteins, and nanoparticles (nanoflows). In this Special Issue, we invited contributions (original research papers, review articles, and brief communications) that focus on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis, micro- and nanofluidics, technologies for flow visualization, MEMS, biochips, and lab-on-a-chip devices and their application to research and industry. We hope to provide an opportunity to the engineering and biomedical community to exchange knowledge and information and to bring together researchers who are interested in the general field of MEMS and micro/nanofluidics and, especially, in its applications to biomedical areas.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">red blood cells</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">metastatic potential</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">microfluidic devices</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">microstructure</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">lens-less</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">regression analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">power-law fluid</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">narrow rectangular microchannel</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">biomedical coatings</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">XTC-YF cells</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">red blood cell (RBC) aggregation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Y-27632</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">finite element method</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">POCT</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CEA detection</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">immersed boundary method</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">suspension</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">particle tracking velocimetry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">biomicrofluidics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">computational fluid dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">red blood cells (RBCs)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">modified conventional erythrocyte sedimentation rate (ESR) method</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">computational biomechanics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">RBC aggregation index</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">microfabrication</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">microfluidics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">morphological analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">chronic renal disease</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">multiple microfluidic channels</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">centrifugal microfluidic device</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">deformability</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">master molder using xurography technique</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fluorescent chemiluminescence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hydrophobic dish</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">pressure-driven flow</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cell deformability</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">mechanophenotyping</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">separation and sorting techniques</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">density medium</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cell adhesion</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">polymers</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">rheology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">circular microchannel</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">blood on chips</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">multinucleated cells</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">velocity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cell analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">microfluidic chip</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">twin-image removal</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cancer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lattice-Boltzmann method</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">diabetes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hyperbolic microchannel</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03921-824-7</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Catarino, Susana</subfield><subfield code="4">auth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lima, Rui A.</subfield><subfield code="4">auth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:48:15 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2020-02-01 22:26:53 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337567940004498&amp;Force_direct=true</subfield><subfield code="Z">5337567940004498</subfield><subfield code="b">Available</subfield><subfield code="8">5337567940004498</subfield></datafield></record></collection>