Decision science for future Earth : : theory and practice / / editor, Tetsukazu Yahara.

This open access book provides a theoretical framework and case studies on decision science for regional sustainability by integrating the natural and social sciences. The cases discussed include solution-oriented transdisciplinary studies on the environment, disasters, health, governance and human...

Full description

Saved in:
Bibliographic Details
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2021.
©2021.
Year of Publication:2021
Language:English
Physical Description:1 online resource (251 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993544262104498
ctrlnum (CKB)4900000000508897
(MiAaPQ)EBC6465859
(Au-PeEL)EBL6465859
(OCoLC)1236264936
(oapen)https://directory.doabooks.org/handle/20.500.12854/63654
(PPN)25325177X
(EXLCZ)994900000000508897
collection bib_alma
record_format marc
spelling Yahara, Tetsukazu edt
Decision science for future Earth : theory and practice / editor, Tetsukazu Yahara.
Springer Nature 2021
Singapore : Springer Singapore Pte. Limited, 2021.
©2021.
1 online resource (251 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Description based on publisher supplied metadata and other sources.
Intro -- Preface -- Contents -- Part I: The Conceptual Framework of Decision Science for a Sustainable Society -- Chapter 1: Decision Science for Future Earth: A Conceptual Framework -- 1 Introduction -- 2 Conceptual Framework of Decision Science for a Sustainable Society -- 2.1 Science of IDEA Cycle, an Iterative Process of Decision-Making and Adaptive Learning -- 2.2 Relationship of the IDEA Cycle with Some Previous Concepts -- 2.3 Evolutionary Theory as a Basis of Decision Science for a Sustainable Society -- 3 Learning from Failures and Guidelines for Co-design -- 3.1 Vulnerability of Group Decision-Making -- 3.2 Predictable Surprise -- 3.2.1 Heuristics -- 3.2.2 Error Management Biases -- 3.3 Guidelines for Co-design Among Stakeholders -- 4 Learning from Successes in Local Communities -- 4.1 Seeds of a Good Anthropocene and Efforts for Adaptive Comanagement -- 4.2 Lessons Learned from Efforts for Adaptive Comanagement -- 4.3 Lessons from Transdisciplinary Projects at the Institute of Decision Science for a Sustainable Society (IDS3) -- 4.3.1 Ecosystem Comanagement in Yakushima, Japan -- 4.3.2 Citizenship Education in an Aging Society of Tsushima, Japan -- 4.3.3 Recovery from Flood Damage in Asakura and Toho, Japan -- 4.3.4 Supporting Community Forestry in Cambodia -- 4.3.5 Development of Portable Health Clinic as Social Business in India -- 4.4 The Roles of Scientists to Drive the Evolution of Knowledge, Institutions, and Social Ties -- 5 How can We Transform Our Society Toward a Sustainable Future? -- 5.1 Promoting Participatory Process -- 5.2 Reducing Conflicts Among Groups with Different Value Systems -- 5.3 Improvement of Institutions -- 5.4 Strengthening Education and Adaptive Learning -- 5.5 Acting Based on Hope Rather than Fear for a Sustainable Future -- 5.6 Evolution of Institutions and Knowledge Toward a Sustainable Future.
References -- Part II: Lessons Learned from Trans-Disciplinary Studies in Local Communities -- Chapter 2: How Can We Develop a Co-design, Co-production, and Co-delivery Process Toward a Sustainable Local Society? Comparat... -- 1 Introduction -- 2 Questions and Perspectives -- 2.1 Scale-Sensitivity -- 2.2 Can Science Transform Society for Sustainability? -- 2.3 Interdisciplinary Research -- 2.4 What Is Society? Who Are Stakeholders? -- 2.5 Taking the ``Co-design/Co-production/Co-delivery´´ Process Seriously -- 3 Problem Setting -- 4 Hypothetical Indicators -- 4.1 Gap Analysis Indicators -- 4.1.1 Stakeholding -- 4.1.2 Scaling -- 4.1.3 Framing -- 4.1.4 Priority -- 4.1.5 Accountability -- 4.1.6 Time Setting -- 4.1.7 Transition Process -- 4.2 Social Consideration Indicators -- 4.2.1 Coordination Subject -- 4.2.2 Social Sensitivity (Awareness of Societal Sensitivity) -- 4.2.3 Social Capital -- 4.2.4 Fairness/Justice -- 4.2.5 Independence/Neutrality -- 4.3 Social Evaluation Indicators -- 4.3.1 Legitimacy -- 4.3.2 How to Decide? -- 4.3.3 Who Decides, for Whom and to Whom? -- 4.3.4 Usefulness of Science -- 4.3.5 Social Sensitivity -- 4.4 Additional Factors -- 4.4.1 Personality -- 4.4.2 Integration of Scientific Research and Education -- 5 Hypothetical Timeline -- 6 Hypothetical Outline Map -- 7 Conclusion -- References -- Chapter 3: Co-design, Co-production, and Co-evaluation Processes for a Mobile Health Check-Up Research Project in Jaipur, Indi... -- 1 Introduction -- 2 Portable Health Clinic (PHC) Research Project -- 2.1 Data Sources -- 2.1.1 Co-design and Co-production Processes Among KU, GC, and BGC in Phase 1 (Photo 3.1) -- 2.1.2 Co-design Process with Local Government Agencies in Phase 2 (Photo 3.2) -- 2.1.3 Co-design, Co-production, and Co-evaluation Processes with a Civil Society Organization in Phase 3 (Photo 3.3).
2.1.4 Co-design, Co-production, and Co-evaluation Processes with Local Government Industry in Phase 4 (Photo 3.4) -- 2.1.5 Co-design, Co-production, and Co-evaluation Processes with Local Private Industry in Phase 5 (Photo 3.5) -- 2.1.6 Summary of Co-design and Co-production Processes in All Five Phases -- References -- Chapter 4: Sustainability of Micro Hydropower Generation in a Traditional Community of Indonesia -- 1 Introduction -- 2 Case History -- 2.1 Phase I (2015): Setting Up the Research Agenda to be Tackled (Co-design) -- 2.2 Phase II (2016): Research Framework in the Ciptagelar Village (Co-design) -- 2.3 Phase III (2017): Learning the Context of the Ciptagelar Community (Co-production) -- 2.4 Phase IV (2018): Scientific Outcomes Revealing the Sustainability Issues of MHP Plants in Ciptagelar (Co-production) -- 3 Exploring Measures to Solve the Issues -- 4 Concluding Remarks and Perspectives -- 5 Lessons Learned -- References -- Chapter 5: Conflict of Legitimacy Over Tropical Forest Lands: Lessons for Collaboration from the Case of Industrial Tree Plant... -- 1 Introduction -- 2 Inequality of Landholding Structure -- 3 Legal Pluralism Formed by Historical Circumstances -- 4 Discussion -- References -- Chapter 6: Sustainable Community Co-development Through Collaboration of Science and Society: Comparison of Success and Failur... -- 1 Introduction -- 2 Definition of Local Society and Local Community -- 3 Tsushima Island -- 4 Project ``Looking for Island Treasures´´ by Local High School Students -- 4.1 Background of the Project Starting -- 4.2 Trial Experiment in the First Year -- 4.3 Development Phase in Second Year -- 4.4 Examining from the Perspective of ``Co-design/Co-production/Co-delivery´´ -- 5 Project ``Reconversion of Abandoned Farmland´´ in Consideration of Biodiversity -- 5.1 Background of the Project Planning -- 5.2 Project Start.
5.3 Project Development -- 5.4 Lesson Learned from the Project ``Reconversion of Abandoned Farmland´´ -- 6 Conclusion -- References -- Part III: Sustainable Natural Resource Management: Theory and Practice -- Chapter 7: Theoretical Models as a Tool to Derive Management Strategies for Sustainable Natural Resource Management -- 1 Introduction -- 2 Connecting the Understanding of Mechanism for Human Cooperation to Strategies for Cooperation in Real Setting -- 2.1 Illegal Logging Suppression -- 2.2 Model -- 2.3 Findings -- 3 Incorporating Social and Ecological Knowledge: Coupled Dynamics for Sustainable Resource Management -- 3.1 Mongolian Rangeland Management -- 3.2 Model -- 3.3 Findings -- 4 Testing Influences of New Stakeholders in Resource Use -- 4.1 Tourists and Traditional Divers in a Common Fishing Ground -- 4.2 Model -- 4.3 Findings -- 5 Conclusion -- References -- Chapter 8: Environmental Concerns of the Pulp and Paper Industry: Focusing on Household and Sanitary Paper Products -- 1 Introduction -- 2 Methods -- 2.1 Survey 1: Visit and Interview APP Paper Mills -- 2.2 Survey 2: Market Survey of Household Paper Products -- 2.3 Survey 3: Interview with End Consumers -- 3 Results -- 3.1 Challenges for Major Paper Manufacturers in China -- 3.2 Difference in Market Penetration of Eco-friendly Household Paper Products in North and South China -- 3.3 University Students Value Environment More When Selecting Household Paper Products -- 4 Discussion -- References -- Chapter 9: Contribution of Community-Based Ecotourism to Forest Conservation and Local Livelihoods -- 1 Introduction -- 2 Chambok CBET -- 3 Contribution to Forest Conservation -- 4 Contribution of CBET to Household Income -- 5 Discussion and Conclusion -- References -- Part IV: Co-designs in a Disaster Recovery Process: Case Studies in the Area Affected by the Kumamoto Earthquake.
Chapter 10: Oral Care that Supports Healthy Lives as a Case Study of the Kumamoto Earthquake -- 1 The Rapid Increase of Pneumonia After the Disaster -- 2 Pneumonia Outbreak After the Great East Japan Earthquake -- 3 The Importance of Oral Care -- 4 Oral Care Activities by Dentists and Dental Hygienists for Reducing Pneumonia Outbreak After the Kumamoto Earthquake -- 5 Mouth Breathing, Its Causes, and Adverse Effects: What People Can Do for Sustainable Health -- References -- Chapter 11: Experiences of University Student Volunteer Activities to Revitalize the Area Affected by the Kumamoto Earthquake -- 1 Introduction -- 2 Students´ Volunteer Activities After the Earthquake -- 2.1 Students´ Actions in the Early Stage After the Earthquake -- 2.2 Tokai University Students in Minami-Aso Village -- 3 Aso Fukkoheno Michi: Experiences and Problems in Activities -- 4 Involvement of the Decision Science Center of Kyushu University Project Team and Its Activities -- 5 Conclusions -- 6 Data Sources -- References -- Chapter 12: Attempt to Develop High-Value Rice in the Shimojin District, Mashiki Town, Kumamoto Prefecture: Transition Into Su... -- 1 Introduction -- 2 Background -- 2.1 Effort for the Development of High-Quality Rice Production Before the Earthquakes: ``Winter Flooded Rice Paddy Fields´´ an... -- 2.2 Damage to Paddy Fields in the Shimojin District Caused by the 2016 Kumamoto Earthquakes -- 3 Consensus Building Process in the Damaged Paddy Restoration in the Shimojin District: Why Did We Aim for High-Value Rice? -- 4 Shimojin Branding Rice in Practice -- 4.1 Design of an Eco-Friendly Agricultural Channel -- 5 Eco-friendly Farming Method Suitable for the Region -- 5.1 Result and Discussion -- References -- Correction to: Decision Science for Future Earth: A Conceptual Framework.
This open access book provides a theoretical framework and case studies on decision science for regional sustainability by integrating the natural and social sciences. The cases discussed include solution-oriented transdisciplinary studies on the environment, disasters, health, governance and human cooperation. Based on these case studies and comprehensive reviews of relevant works, including lessons learned from past failures for predictable surprises and successes in adaptive co-management, the book provides the reader with new perspectives on how we can co-design collaborative projects with various conflicts of interest and how we can transform our society for a sustainable future. The book makes a valuable contribution to the global research initiative Future Earth, promoting transdisciplinary studies to bridge the gap between science and society in knowledge generation processes and supporting efforts to achieve the UN’s Sustainable Development Goals (SDGs). Compared to other publications on transdisciplinary studies, this book is unique in that evolutionary biology is used as an integrator for various areas related to human decision-making, and approaches social changes as processes of adaptive learning and evolution. Given its scope, the book is highly recommended to all readers seeking an integrated overview of human decision-making in the context of social transformation.
English
Kyushu University
Group decision making.
Sustainability Decision making.
Conservation Biology/Ecology
Science, Humanities and Social Sciences, multidisciplinary
Health Promotion and Disease Prevention
Forestry Management
Civil Engineering
Sociology, general
Conservation Biology
Humanities and Social Sciences
Forestry
Biotechnology
Open Access
Transdisciplinary research
Human evolution
Cognitive biases
Adaptive management
Social dilemma
Sustainable society
Conservation of the environment
Interdisciplinary studies
Public health & preventive medicine
Forestry & silviculture: practice & techniques
Civil engineering, surveying & building
Sociology
Yahara, Tetsukazu, 1954- editor.
981-15-8631-4
language English
format eBook
author2 Yahara, Tetsukazu, 1954-
author_facet Yahara, Tetsukazu, 1954-
author2_variant t y ty
t y ty
author2_role TeilnehmendeR
title Decision science for future Earth : theory and practice /
spellingShingle Decision science for future Earth : theory and practice /
Intro -- Preface -- Contents -- Part I: The Conceptual Framework of Decision Science for a Sustainable Society -- Chapter 1: Decision Science for Future Earth: A Conceptual Framework -- 1 Introduction -- 2 Conceptual Framework of Decision Science for a Sustainable Society -- 2.1 Science of IDEA Cycle, an Iterative Process of Decision-Making and Adaptive Learning -- 2.2 Relationship of the IDEA Cycle with Some Previous Concepts -- 2.3 Evolutionary Theory as a Basis of Decision Science for a Sustainable Society -- 3 Learning from Failures and Guidelines for Co-design -- 3.1 Vulnerability of Group Decision-Making -- 3.2 Predictable Surprise -- 3.2.1 Heuristics -- 3.2.2 Error Management Biases -- 3.3 Guidelines for Co-design Among Stakeholders -- 4 Learning from Successes in Local Communities -- 4.1 Seeds of a Good Anthropocene and Efforts for Adaptive Comanagement -- 4.2 Lessons Learned from Efforts for Adaptive Comanagement -- 4.3 Lessons from Transdisciplinary Projects at the Institute of Decision Science for a Sustainable Society (IDS3) -- 4.3.1 Ecosystem Comanagement in Yakushima, Japan -- 4.3.2 Citizenship Education in an Aging Society of Tsushima, Japan -- 4.3.3 Recovery from Flood Damage in Asakura and Toho, Japan -- 4.3.4 Supporting Community Forestry in Cambodia -- 4.3.5 Development of Portable Health Clinic as Social Business in India -- 4.4 The Roles of Scientists to Drive the Evolution of Knowledge, Institutions, and Social Ties -- 5 How can We Transform Our Society Toward a Sustainable Future? -- 5.1 Promoting Participatory Process -- 5.2 Reducing Conflicts Among Groups with Different Value Systems -- 5.3 Improvement of Institutions -- 5.4 Strengthening Education and Adaptive Learning -- 5.5 Acting Based on Hope Rather than Fear for a Sustainable Future -- 5.6 Evolution of Institutions and Knowledge Toward a Sustainable Future.
References -- Part II: Lessons Learned from Trans-Disciplinary Studies in Local Communities -- Chapter 2: How Can We Develop a Co-design, Co-production, and Co-delivery Process Toward a Sustainable Local Society? Comparat... -- 1 Introduction -- 2 Questions and Perspectives -- 2.1 Scale-Sensitivity -- 2.2 Can Science Transform Society for Sustainability? -- 2.3 Interdisciplinary Research -- 2.4 What Is Society? Who Are Stakeholders? -- 2.5 Taking the ``Co-design/Co-production/Co-delivery´´ Process Seriously -- 3 Problem Setting -- 4 Hypothetical Indicators -- 4.1 Gap Analysis Indicators -- 4.1.1 Stakeholding -- 4.1.2 Scaling -- 4.1.3 Framing -- 4.1.4 Priority -- 4.1.5 Accountability -- 4.1.6 Time Setting -- 4.1.7 Transition Process -- 4.2 Social Consideration Indicators -- 4.2.1 Coordination Subject -- 4.2.2 Social Sensitivity (Awareness of Societal Sensitivity) -- 4.2.3 Social Capital -- 4.2.4 Fairness/Justice -- 4.2.5 Independence/Neutrality -- 4.3 Social Evaluation Indicators -- 4.3.1 Legitimacy -- 4.3.2 How to Decide? -- 4.3.3 Who Decides, for Whom and to Whom? -- 4.3.4 Usefulness of Science -- 4.3.5 Social Sensitivity -- 4.4 Additional Factors -- 4.4.1 Personality -- 4.4.2 Integration of Scientific Research and Education -- 5 Hypothetical Timeline -- 6 Hypothetical Outline Map -- 7 Conclusion -- References -- Chapter 3: Co-design, Co-production, and Co-evaluation Processes for a Mobile Health Check-Up Research Project in Jaipur, Indi... -- 1 Introduction -- 2 Portable Health Clinic (PHC) Research Project -- 2.1 Data Sources -- 2.1.1 Co-design and Co-production Processes Among KU, GC, and BGC in Phase 1 (Photo 3.1) -- 2.1.2 Co-design Process with Local Government Agencies in Phase 2 (Photo 3.2) -- 2.1.3 Co-design, Co-production, and Co-evaluation Processes with a Civil Society Organization in Phase 3 (Photo 3.3).
2.1.4 Co-design, Co-production, and Co-evaluation Processes with Local Government Industry in Phase 4 (Photo 3.4) -- 2.1.5 Co-design, Co-production, and Co-evaluation Processes with Local Private Industry in Phase 5 (Photo 3.5) -- 2.1.6 Summary of Co-design and Co-production Processes in All Five Phases -- References -- Chapter 4: Sustainability of Micro Hydropower Generation in a Traditional Community of Indonesia -- 1 Introduction -- 2 Case History -- 2.1 Phase I (2015): Setting Up the Research Agenda to be Tackled (Co-design) -- 2.2 Phase II (2016): Research Framework in the Ciptagelar Village (Co-design) -- 2.3 Phase III (2017): Learning the Context of the Ciptagelar Community (Co-production) -- 2.4 Phase IV (2018): Scientific Outcomes Revealing the Sustainability Issues of MHP Plants in Ciptagelar (Co-production) -- 3 Exploring Measures to Solve the Issues -- 4 Concluding Remarks and Perspectives -- 5 Lessons Learned -- References -- Chapter 5: Conflict of Legitimacy Over Tropical Forest Lands: Lessons for Collaboration from the Case of Industrial Tree Plant... -- 1 Introduction -- 2 Inequality of Landholding Structure -- 3 Legal Pluralism Formed by Historical Circumstances -- 4 Discussion -- References -- Chapter 6: Sustainable Community Co-development Through Collaboration of Science and Society: Comparison of Success and Failur... -- 1 Introduction -- 2 Definition of Local Society and Local Community -- 3 Tsushima Island -- 4 Project ``Looking for Island Treasures´´ by Local High School Students -- 4.1 Background of the Project Starting -- 4.2 Trial Experiment in the First Year -- 4.3 Development Phase in Second Year -- 4.4 Examining from the Perspective of ``Co-design/Co-production/Co-delivery´´ -- 5 Project ``Reconversion of Abandoned Farmland´´ in Consideration of Biodiversity -- 5.1 Background of the Project Planning -- 5.2 Project Start.
5.3 Project Development -- 5.4 Lesson Learned from the Project ``Reconversion of Abandoned Farmland´´ -- 6 Conclusion -- References -- Part III: Sustainable Natural Resource Management: Theory and Practice -- Chapter 7: Theoretical Models as a Tool to Derive Management Strategies for Sustainable Natural Resource Management -- 1 Introduction -- 2 Connecting the Understanding of Mechanism for Human Cooperation to Strategies for Cooperation in Real Setting -- 2.1 Illegal Logging Suppression -- 2.2 Model -- 2.3 Findings -- 3 Incorporating Social and Ecological Knowledge: Coupled Dynamics for Sustainable Resource Management -- 3.1 Mongolian Rangeland Management -- 3.2 Model -- 3.3 Findings -- 4 Testing Influences of New Stakeholders in Resource Use -- 4.1 Tourists and Traditional Divers in a Common Fishing Ground -- 4.2 Model -- 4.3 Findings -- 5 Conclusion -- References -- Chapter 8: Environmental Concerns of the Pulp and Paper Industry: Focusing on Household and Sanitary Paper Products -- 1 Introduction -- 2 Methods -- 2.1 Survey 1: Visit and Interview APP Paper Mills -- 2.2 Survey 2: Market Survey of Household Paper Products -- 2.3 Survey 3: Interview with End Consumers -- 3 Results -- 3.1 Challenges for Major Paper Manufacturers in China -- 3.2 Difference in Market Penetration of Eco-friendly Household Paper Products in North and South China -- 3.3 University Students Value Environment More When Selecting Household Paper Products -- 4 Discussion -- References -- Chapter 9: Contribution of Community-Based Ecotourism to Forest Conservation and Local Livelihoods -- 1 Introduction -- 2 Chambok CBET -- 3 Contribution to Forest Conservation -- 4 Contribution of CBET to Household Income -- 5 Discussion and Conclusion -- References -- Part IV: Co-designs in a Disaster Recovery Process: Case Studies in the Area Affected by the Kumamoto Earthquake.
Chapter 10: Oral Care that Supports Healthy Lives as a Case Study of the Kumamoto Earthquake -- 1 The Rapid Increase of Pneumonia After the Disaster -- 2 Pneumonia Outbreak After the Great East Japan Earthquake -- 3 The Importance of Oral Care -- 4 Oral Care Activities by Dentists and Dental Hygienists for Reducing Pneumonia Outbreak After the Kumamoto Earthquake -- 5 Mouth Breathing, Its Causes, and Adverse Effects: What People Can Do for Sustainable Health -- References -- Chapter 11: Experiences of University Student Volunteer Activities to Revitalize the Area Affected by the Kumamoto Earthquake -- 1 Introduction -- 2 Students´ Volunteer Activities After the Earthquake -- 2.1 Students´ Actions in the Early Stage After the Earthquake -- 2.2 Tokai University Students in Minami-Aso Village -- 3 Aso Fukkoheno Michi: Experiences and Problems in Activities -- 4 Involvement of the Decision Science Center of Kyushu University Project Team and Its Activities -- 5 Conclusions -- 6 Data Sources -- References -- Chapter 12: Attempt to Develop High-Value Rice in the Shimojin District, Mashiki Town, Kumamoto Prefecture: Transition Into Su... -- 1 Introduction -- 2 Background -- 2.1 Effort for the Development of High-Quality Rice Production Before the Earthquakes: ``Winter Flooded Rice Paddy Fields´´ an... -- 2.2 Damage to Paddy Fields in the Shimojin District Caused by the 2016 Kumamoto Earthquakes -- 3 Consensus Building Process in the Damaged Paddy Restoration in the Shimojin District: Why Did We Aim for High-Value Rice? -- 4 Shimojin Branding Rice in Practice -- 4.1 Design of an Eco-Friendly Agricultural Channel -- 5 Eco-friendly Farming Method Suitable for the Region -- 5.1 Result and Discussion -- References -- Correction to: Decision Science for Future Earth: A Conceptual Framework.
title_sub theory and practice /
title_full Decision science for future Earth : theory and practice / editor, Tetsukazu Yahara.
title_fullStr Decision science for future Earth : theory and practice / editor, Tetsukazu Yahara.
title_full_unstemmed Decision science for future Earth : theory and practice / editor, Tetsukazu Yahara.
title_auth Decision science for future Earth : theory and practice /
title_new Decision science for future Earth :
title_sort decision science for future earth : theory and practice /
publisher Springer Nature
Springer Singapore Pte. Limited,
publishDate 2021
physical 1 online resource (251 pages)
contents Intro -- Preface -- Contents -- Part I: The Conceptual Framework of Decision Science for a Sustainable Society -- Chapter 1: Decision Science for Future Earth: A Conceptual Framework -- 1 Introduction -- 2 Conceptual Framework of Decision Science for a Sustainable Society -- 2.1 Science of IDEA Cycle, an Iterative Process of Decision-Making and Adaptive Learning -- 2.2 Relationship of the IDEA Cycle with Some Previous Concepts -- 2.3 Evolutionary Theory as a Basis of Decision Science for a Sustainable Society -- 3 Learning from Failures and Guidelines for Co-design -- 3.1 Vulnerability of Group Decision-Making -- 3.2 Predictable Surprise -- 3.2.1 Heuristics -- 3.2.2 Error Management Biases -- 3.3 Guidelines for Co-design Among Stakeholders -- 4 Learning from Successes in Local Communities -- 4.1 Seeds of a Good Anthropocene and Efforts for Adaptive Comanagement -- 4.2 Lessons Learned from Efforts for Adaptive Comanagement -- 4.3 Lessons from Transdisciplinary Projects at the Institute of Decision Science for a Sustainable Society (IDS3) -- 4.3.1 Ecosystem Comanagement in Yakushima, Japan -- 4.3.2 Citizenship Education in an Aging Society of Tsushima, Japan -- 4.3.3 Recovery from Flood Damage in Asakura and Toho, Japan -- 4.3.4 Supporting Community Forestry in Cambodia -- 4.3.5 Development of Portable Health Clinic as Social Business in India -- 4.4 The Roles of Scientists to Drive the Evolution of Knowledge, Institutions, and Social Ties -- 5 How can We Transform Our Society Toward a Sustainable Future? -- 5.1 Promoting Participatory Process -- 5.2 Reducing Conflicts Among Groups with Different Value Systems -- 5.3 Improvement of Institutions -- 5.4 Strengthening Education and Adaptive Learning -- 5.5 Acting Based on Hope Rather than Fear for a Sustainable Future -- 5.6 Evolution of Institutions and Knowledge Toward a Sustainable Future.
References -- Part II: Lessons Learned from Trans-Disciplinary Studies in Local Communities -- Chapter 2: How Can We Develop a Co-design, Co-production, and Co-delivery Process Toward a Sustainable Local Society? Comparat... -- 1 Introduction -- 2 Questions and Perspectives -- 2.1 Scale-Sensitivity -- 2.2 Can Science Transform Society for Sustainability? -- 2.3 Interdisciplinary Research -- 2.4 What Is Society? Who Are Stakeholders? -- 2.5 Taking the ``Co-design/Co-production/Co-delivery´´ Process Seriously -- 3 Problem Setting -- 4 Hypothetical Indicators -- 4.1 Gap Analysis Indicators -- 4.1.1 Stakeholding -- 4.1.2 Scaling -- 4.1.3 Framing -- 4.1.4 Priority -- 4.1.5 Accountability -- 4.1.6 Time Setting -- 4.1.7 Transition Process -- 4.2 Social Consideration Indicators -- 4.2.1 Coordination Subject -- 4.2.2 Social Sensitivity (Awareness of Societal Sensitivity) -- 4.2.3 Social Capital -- 4.2.4 Fairness/Justice -- 4.2.5 Independence/Neutrality -- 4.3 Social Evaluation Indicators -- 4.3.1 Legitimacy -- 4.3.2 How to Decide? -- 4.3.3 Who Decides, for Whom and to Whom? -- 4.3.4 Usefulness of Science -- 4.3.5 Social Sensitivity -- 4.4 Additional Factors -- 4.4.1 Personality -- 4.4.2 Integration of Scientific Research and Education -- 5 Hypothetical Timeline -- 6 Hypothetical Outline Map -- 7 Conclusion -- References -- Chapter 3: Co-design, Co-production, and Co-evaluation Processes for a Mobile Health Check-Up Research Project in Jaipur, Indi... -- 1 Introduction -- 2 Portable Health Clinic (PHC) Research Project -- 2.1 Data Sources -- 2.1.1 Co-design and Co-production Processes Among KU, GC, and BGC in Phase 1 (Photo 3.1) -- 2.1.2 Co-design Process with Local Government Agencies in Phase 2 (Photo 3.2) -- 2.1.3 Co-design, Co-production, and Co-evaluation Processes with a Civil Society Organization in Phase 3 (Photo 3.3).
2.1.4 Co-design, Co-production, and Co-evaluation Processes with Local Government Industry in Phase 4 (Photo 3.4) -- 2.1.5 Co-design, Co-production, and Co-evaluation Processes with Local Private Industry in Phase 5 (Photo 3.5) -- 2.1.6 Summary of Co-design and Co-production Processes in All Five Phases -- References -- Chapter 4: Sustainability of Micro Hydropower Generation in a Traditional Community of Indonesia -- 1 Introduction -- 2 Case History -- 2.1 Phase I (2015): Setting Up the Research Agenda to be Tackled (Co-design) -- 2.2 Phase II (2016): Research Framework in the Ciptagelar Village (Co-design) -- 2.3 Phase III (2017): Learning the Context of the Ciptagelar Community (Co-production) -- 2.4 Phase IV (2018): Scientific Outcomes Revealing the Sustainability Issues of MHP Plants in Ciptagelar (Co-production) -- 3 Exploring Measures to Solve the Issues -- 4 Concluding Remarks and Perspectives -- 5 Lessons Learned -- References -- Chapter 5: Conflict of Legitimacy Over Tropical Forest Lands: Lessons for Collaboration from the Case of Industrial Tree Plant... -- 1 Introduction -- 2 Inequality of Landholding Structure -- 3 Legal Pluralism Formed by Historical Circumstances -- 4 Discussion -- References -- Chapter 6: Sustainable Community Co-development Through Collaboration of Science and Society: Comparison of Success and Failur... -- 1 Introduction -- 2 Definition of Local Society and Local Community -- 3 Tsushima Island -- 4 Project ``Looking for Island Treasures´´ by Local High School Students -- 4.1 Background of the Project Starting -- 4.2 Trial Experiment in the First Year -- 4.3 Development Phase in Second Year -- 4.4 Examining from the Perspective of ``Co-design/Co-production/Co-delivery´´ -- 5 Project ``Reconversion of Abandoned Farmland´´ in Consideration of Biodiversity -- 5.1 Background of the Project Planning -- 5.2 Project Start.
5.3 Project Development -- 5.4 Lesson Learned from the Project ``Reconversion of Abandoned Farmland´´ -- 6 Conclusion -- References -- Part III: Sustainable Natural Resource Management: Theory and Practice -- Chapter 7: Theoretical Models as a Tool to Derive Management Strategies for Sustainable Natural Resource Management -- 1 Introduction -- 2 Connecting the Understanding of Mechanism for Human Cooperation to Strategies for Cooperation in Real Setting -- 2.1 Illegal Logging Suppression -- 2.2 Model -- 2.3 Findings -- 3 Incorporating Social and Ecological Knowledge: Coupled Dynamics for Sustainable Resource Management -- 3.1 Mongolian Rangeland Management -- 3.2 Model -- 3.3 Findings -- 4 Testing Influences of New Stakeholders in Resource Use -- 4.1 Tourists and Traditional Divers in a Common Fishing Ground -- 4.2 Model -- 4.3 Findings -- 5 Conclusion -- References -- Chapter 8: Environmental Concerns of the Pulp and Paper Industry: Focusing on Household and Sanitary Paper Products -- 1 Introduction -- 2 Methods -- 2.1 Survey 1: Visit and Interview APP Paper Mills -- 2.2 Survey 2: Market Survey of Household Paper Products -- 2.3 Survey 3: Interview with End Consumers -- 3 Results -- 3.1 Challenges for Major Paper Manufacturers in China -- 3.2 Difference in Market Penetration of Eco-friendly Household Paper Products in North and South China -- 3.3 University Students Value Environment More When Selecting Household Paper Products -- 4 Discussion -- References -- Chapter 9: Contribution of Community-Based Ecotourism to Forest Conservation and Local Livelihoods -- 1 Introduction -- 2 Chambok CBET -- 3 Contribution to Forest Conservation -- 4 Contribution of CBET to Household Income -- 5 Discussion and Conclusion -- References -- Part IV: Co-designs in a Disaster Recovery Process: Case Studies in the Area Affected by the Kumamoto Earthquake.
Chapter 10: Oral Care that Supports Healthy Lives as a Case Study of the Kumamoto Earthquake -- 1 The Rapid Increase of Pneumonia After the Disaster -- 2 Pneumonia Outbreak After the Great East Japan Earthquake -- 3 The Importance of Oral Care -- 4 Oral Care Activities by Dentists and Dental Hygienists for Reducing Pneumonia Outbreak After the Kumamoto Earthquake -- 5 Mouth Breathing, Its Causes, and Adverse Effects: What People Can Do for Sustainable Health -- References -- Chapter 11: Experiences of University Student Volunteer Activities to Revitalize the Area Affected by the Kumamoto Earthquake -- 1 Introduction -- 2 Students´ Volunteer Activities After the Earthquake -- 2.1 Students´ Actions in the Early Stage After the Earthquake -- 2.2 Tokai University Students in Minami-Aso Village -- 3 Aso Fukkoheno Michi: Experiences and Problems in Activities -- 4 Involvement of the Decision Science Center of Kyushu University Project Team and Its Activities -- 5 Conclusions -- 6 Data Sources -- References -- Chapter 12: Attempt to Develop High-Value Rice in the Shimojin District, Mashiki Town, Kumamoto Prefecture: Transition Into Su... -- 1 Introduction -- 2 Background -- 2.1 Effort for the Development of High-Quality Rice Production Before the Earthquakes: ``Winter Flooded Rice Paddy Fields´´ an... -- 2.2 Damage to Paddy Fields in the Shimojin District Caused by the 2016 Kumamoto Earthquakes -- 3 Consensus Building Process in the Damaged Paddy Restoration in the Shimojin District: Why Did We Aim for High-Value Rice? -- 4 Shimojin Branding Rice in Practice -- 4.1 Design of an Eco-Friendly Agricultural Channel -- 5 Eco-friendly Farming Method Suitable for the Region -- 5.1 Result and Discussion -- References -- Correction to: Decision Science for Future Earth: A Conceptual Framework.
isbn 981-15-8632-2
981-15-8631-4
callnumber-first Q - Science
callnumber-subject QH - Natural History and Biology
callnumber-label QH301-705
callnumber-sort QH 3301 3705
illustrated Not Illustrated
oclc_num 1236264936
work_keys_str_mv AT yaharatetsukazu decisionscienceforfutureearththeoryandpractice
status_str n
ids_txt_mv (CKB)4900000000508897
(MiAaPQ)EBC6465859
(Au-PeEL)EBL6465859
(OCoLC)1236264936
(oapen)https://directory.doabooks.org/handle/20.500.12854/63654
(PPN)25325177X
(EXLCZ)994900000000508897
carrierType_str_mv cr
is_hierarchy_title Decision science for future Earth : theory and practice /
author2_original_writing_str_mv noLinkedField
_version_ 1796652264007401472
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10529nam a22004093i 4500</leader><controlfield tag="001">993544262104498</controlfield><controlfield tag="005">20220913205054.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr#cnu||||||||</controlfield><controlfield tag="008">210901s2021 si fo 000|0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981-15-8632-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4900000000508897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC6465859</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6465859</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1236264936</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/63654</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PPN)25325177X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994900000000508897</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QH301-705</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yahara, Tetsukazu</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Decision science for future Earth :</subfield><subfield code="b">theory and practice /</subfield><subfield code="c">editor, Tetsukazu Yahara.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">Springer Nature</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">Springer Singapore Pte. Limited,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (251 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Part I: The Conceptual Framework of Decision Science for a Sustainable Society -- Chapter 1: Decision Science for Future Earth: A Conceptual Framework -- 1 Introduction -- 2 Conceptual Framework of Decision Science for a Sustainable Society -- 2.1 Science of IDEA Cycle, an Iterative Process of Decision-Making and Adaptive Learning -- 2.2 Relationship of the IDEA Cycle with Some Previous Concepts -- 2.3 Evolutionary Theory as a Basis of Decision Science for a Sustainable Society -- 3 Learning from Failures and Guidelines for Co-design -- 3.1 Vulnerability of Group Decision-Making -- 3.2 Predictable Surprise -- 3.2.1 Heuristics -- 3.2.2 Error Management Biases -- 3.3 Guidelines for Co-design Among Stakeholders -- 4 Learning from Successes in Local Communities -- 4.1 Seeds of a Good Anthropocene and Efforts for Adaptive Comanagement -- 4.2 Lessons Learned from Efforts for Adaptive Comanagement -- 4.3 Lessons from Transdisciplinary Projects at the Institute of Decision Science for a Sustainable Society (IDS3) -- 4.3.1 Ecosystem Comanagement in Yakushima, Japan -- 4.3.2 Citizenship Education in an Aging Society of Tsushima, Japan -- 4.3.3 Recovery from Flood Damage in Asakura and Toho, Japan -- 4.3.4 Supporting Community Forestry in Cambodia -- 4.3.5 Development of Portable Health Clinic as Social Business in India -- 4.4 The Roles of Scientists to Drive the Evolution of Knowledge, Institutions, and Social Ties -- 5 How can We Transform Our Society Toward a Sustainable Future? -- 5.1 Promoting Participatory Process -- 5.2 Reducing Conflicts Among Groups with Different Value Systems -- 5.3 Improvement of Institutions -- 5.4 Strengthening Education and Adaptive Learning -- 5.5 Acting Based on Hope Rather than Fear for a Sustainable Future -- 5.6 Evolution of Institutions and Knowledge Toward a Sustainable Future.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">References -- Part II: Lessons Learned from Trans-Disciplinary Studies in Local Communities -- Chapter 2: How Can We Develop a Co-design, Co-production, and Co-delivery Process Toward a Sustainable Local Society? Comparat... -- 1 Introduction -- 2 Questions and Perspectives -- 2.1 Scale-Sensitivity -- 2.2 Can Science Transform Society for Sustainability? -- 2.3 Interdisciplinary Research -- 2.4 What Is Society? Who Are Stakeholders? -- 2.5 Taking the ``Co-design/Co-production/Co-delivery´´ Process Seriously -- 3 Problem Setting -- 4 Hypothetical Indicators -- 4.1 Gap Analysis Indicators -- 4.1.1 Stakeholding -- 4.1.2 Scaling -- 4.1.3 Framing -- 4.1.4 Priority -- 4.1.5 Accountability -- 4.1.6 Time Setting -- 4.1.7 Transition Process -- 4.2 Social Consideration Indicators -- 4.2.1 Coordination Subject -- 4.2.2 Social Sensitivity (Awareness of Societal Sensitivity) -- 4.2.3 Social Capital -- 4.2.4 Fairness/Justice -- 4.2.5 Independence/Neutrality -- 4.3 Social Evaluation Indicators -- 4.3.1 Legitimacy -- 4.3.2 How to Decide? -- 4.3.3 Who Decides, for Whom and to Whom? -- 4.3.4 Usefulness of Science -- 4.3.5 Social Sensitivity -- 4.4 Additional Factors -- 4.4.1 Personality -- 4.4.2 Integration of Scientific Research and Education -- 5 Hypothetical Timeline -- 6 Hypothetical Outline Map -- 7 Conclusion -- References -- Chapter 3: Co-design, Co-production, and Co-evaluation Processes for a Mobile Health Check-Up Research Project in Jaipur, Indi... -- 1 Introduction -- 2 Portable Health Clinic (PHC) Research Project -- 2.1 Data Sources -- 2.1.1 Co-design and Co-production Processes Among KU, GC, and BGC in Phase 1 (Photo 3.1) -- 2.1.2 Co-design Process with Local Government Agencies in Phase 2 (Photo 3.2) -- 2.1.3 Co-design, Co-production, and Co-evaluation Processes with a Civil Society Organization in Phase 3 (Photo 3.3).</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1.4 Co-design, Co-production, and Co-evaluation Processes with Local Government Industry in Phase 4 (Photo 3.4) -- 2.1.5 Co-design, Co-production, and Co-evaluation Processes with Local Private Industry in Phase 5 (Photo 3.5) -- 2.1.6 Summary of Co-design and Co-production Processes in All Five Phases -- References -- Chapter 4: Sustainability of Micro Hydropower Generation in a Traditional Community of Indonesia -- 1 Introduction -- 2 Case History -- 2.1 Phase I (2015): Setting Up the Research Agenda to be Tackled (Co-design) -- 2.2 Phase II (2016): Research Framework in the Ciptagelar Village (Co-design) -- 2.3 Phase III (2017): Learning the Context of the Ciptagelar Community (Co-production) -- 2.4 Phase IV (2018): Scientific Outcomes Revealing the Sustainability Issues of MHP Plants in Ciptagelar (Co-production) -- 3 Exploring Measures to Solve the Issues -- 4 Concluding Remarks and Perspectives -- 5 Lessons Learned -- References -- Chapter 5: Conflict of Legitimacy Over Tropical Forest Lands: Lessons for Collaboration from the Case of Industrial Tree Plant... -- 1 Introduction -- 2 Inequality of Landholding Structure -- 3 Legal Pluralism Formed by Historical Circumstances -- 4 Discussion -- References -- Chapter 6: Sustainable Community Co-development Through Collaboration of Science and Society: Comparison of Success and Failur... -- 1 Introduction -- 2 Definition of Local Society and Local Community -- 3 Tsushima Island -- 4 Project ``Looking for Island Treasures´´ by Local High School Students -- 4.1 Background of the Project Starting -- 4.2 Trial Experiment in the First Year -- 4.3 Development Phase in Second Year -- 4.4 Examining from the Perspective of ``Co-design/Co-production/Co-delivery´´ -- 5 Project ``Reconversion of Abandoned Farmland´´ in Consideration of Biodiversity -- 5.1 Background of the Project Planning -- 5.2 Project Start.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3 Project Development -- 5.4 Lesson Learned from the Project ``Reconversion of Abandoned Farmland´´ -- 6 Conclusion -- References -- Part III: Sustainable Natural Resource Management: Theory and Practice -- Chapter 7: Theoretical Models as a Tool to Derive Management Strategies for Sustainable Natural Resource Management -- 1 Introduction -- 2 Connecting the Understanding of Mechanism for Human Cooperation to Strategies for Cooperation in Real Setting -- 2.1 Illegal Logging Suppression -- 2.2 Model -- 2.3 Findings -- 3 Incorporating Social and Ecological Knowledge: Coupled Dynamics for Sustainable Resource Management -- 3.1 Mongolian Rangeland Management -- 3.2 Model -- 3.3 Findings -- 4 Testing Influences of New Stakeholders in Resource Use -- 4.1 Tourists and Traditional Divers in a Common Fishing Ground -- 4.2 Model -- 4.3 Findings -- 5 Conclusion -- References -- Chapter 8: Environmental Concerns of the Pulp and Paper Industry: Focusing on Household and Sanitary Paper Products -- 1 Introduction -- 2 Methods -- 2.1 Survey 1: Visit and Interview APP Paper Mills -- 2.2 Survey 2: Market Survey of Household Paper Products -- 2.3 Survey 3: Interview with End Consumers -- 3 Results -- 3.1 Challenges for Major Paper Manufacturers in China -- 3.2 Difference in Market Penetration of Eco-friendly Household Paper Products in North and South China -- 3.3 University Students Value Environment More When Selecting Household Paper Products -- 4 Discussion -- References -- Chapter 9: Contribution of Community-Based Ecotourism to Forest Conservation and Local Livelihoods -- 1 Introduction -- 2 Chambok CBET -- 3 Contribution to Forest Conservation -- 4 Contribution of CBET to Household Income -- 5 Discussion and Conclusion -- References -- Part IV: Co-designs in a Disaster Recovery Process: Case Studies in the Area Affected by the Kumamoto Earthquake.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 10: Oral Care that Supports Healthy Lives as a Case Study of the Kumamoto Earthquake -- 1 The Rapid Increase of Pneumonia After the Disaster -- 2 Pneumonia Outbreak After the Great East Japan Earthquake -- 3 The Importance of Oral Care -- 4 Oral Care Activities by Dentists and Dental Hygienists for Reducing Pneumonia Outbreak After the Kumamoto Earthquake -- 5 Mouth Breathing, Its Causes, and Adverse Effects: What People Can Do for Sustainable Health -- References -- Chapter 11: Experiences of University Student Volunteer Activities to Revitalize the Area Affected by the Kumamoto Earthquake -- 1 Introduction -- 2 Students´ Volunteer Activities After the Earthquake -- 2.1 Students´ Actions in the Early Stage After the Earthquake -- 2.2 Tokai University Students in Minami-Aso Village -- 3 Aso Fukkoheno Michi: Experiences and Problems in Activities -- 4 Involvement of the Decision Science Center of Kyushu University Project Team and Its Activities -- 5 Conclusions -- 6 Data Sources -- References -- Chapter 12: Attempt to Develop High-Value Rice in the Shimojin District, Mashiki Town, Kumamoto Prefecture: Transition Into Su... -- 1 Introduction -- 2 Background -- 2.1 Effort for the Development of High-Quality Rice Production Before the Earthquakes: ``Winter Flooded Rice Paddy Fields´´ an... -- 2.2 Damage to Paddy Fields in the Shimojin District Caused by the 2016 Kumamoto Earthquakes -- 3 Consensus Building Process in the Damaged Paddy Restoration in the Shimojin District: Why Did We Aim for High-Value Rice? -- 4 Shimojin Branding Rice in Practice -- 4.1 Design of an Eco-Friendly Agricultural Channel -- 5 Eco-friendly Farming Method Suitable for the Region -- 5.1 Result and Discussion -- References -- Correction to: Decision Science for Future Earth: A Conceptual Framework.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This open access book provides a theoretical framework and case studies on decision science for regional sustainability by integrating the natural and social sciences. The cases discussed include solution-oriented transdisciplinary studies on the environment, disasters, health, governance and human cooperation. Based on these case studies and comprehensive reviews of relevant works, including lessons learned from past failures for predictable surprises and successes in adaptive co-management, the book provides the reader with new perspectives on how we can co-design collaborative projects with various conflicts of interest and how we can transform our society for a sustainable future. The book makes a valuable contribution to the global research initiative Future Earth, promoting transdisciplinary studies to bridge the gap between science and society in knowledge generation processes and supporting efforts to achieve the UN’s Sustainable Development Goals (SDGs). Compared to other publications on transdisciplinary studies, this book is unique in that evolutionary biology is used as an integrator for various areas related to human decision-making, and approaches social changes as processes of adaptive learning and evolution. Given its scope, the book is highly recommended to all readers seeking an integrated overview of human decision-making in the context of social transformation.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="536" ind1=" " ind2=" "><subfield code="a">Kyushu University</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Group decision making.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Sustainability</subfield><subfield code="x">Decision making.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Conservation Biology/Ecology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Science, Humanities and Social Sciences, multidisciplinary</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Health Promotion and Disease Prevention</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Forestry Management</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Civil Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sociology, general</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Conservation Biology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Humanities and Social Sciences</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Forestry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Open Access</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Transdisciplinary research</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Human evolution</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cognitive biases</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Adaptive management</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Social dilemma</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sustainable society</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Conservation of the environment</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Interdisciplinary studies</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Public health &amp; preventive medicine</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Forestry &amp; silviculture: practice &amp; techniques</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Civil engineering, surveying &amp; building</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sociology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yahara, Tetsukazu,</subfield><subfield code="d">1954-</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">981-15-8631-4</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-05-20 15:41:35 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2021-02-13 21:59:02 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337591250004498&amp;Force_direct=true</subfield><subfield code="Z">5337591250004498</subfield><subfield code="b">Available</subfield><subfield code="8">5337591250004498</subfield></datafield></record></collection>