Creep and High Temperature Deformation of Metals and Alloys

By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature def...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2019
Language:English
Physical Description:1 electronic resource (212 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993544116404498
ctrlnum (CKB)4100000010106335
(oapen)https://directory.doabooks.org/handle/20.500.12854/44233
(EXLCZ)994100000010106335
collection bib_alma
record_format marc
spelling Gariboldi, Elisabetta auth
Creep and High Temperature Deformation of Metals and Alloys
MDPI - Multidisciplinary Digital Publishing Institute 2019
1 electronic resource (212 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated.This book includes recent contributions covering relevant topics and materials in the field in an innovative way. In the first section, contributions are related to the general description of creep deformation, damage, and ductility, while in the second section, innovative testing techniques of creep deformation are presented. The third section deals with creep in the presence of complex loading/temperature changes and environmental effects, while the last section focuses on material microstructure–creep correlations for specific material classes. The quality and potential of specific materials and microstructures, testing conditions, and modeling as addressed by specific contributions will surely inspire scientists and technicians in their own innovative approaches and studies on creep and high-temperature deformation.
English
Larson–Miller parameter
visualization
bond coat
hydrogen
poly-crystal
Gibbs free energy principle
constitutive equations
creep damage
DFT
finite element method
austenitic stainless steel
strain rate sensitivity
MCrAlY
excess volume
superalloy
scanning electron microscopy
creep buckling
dislocation dynamics
creep
elevated temperature
modelling
size effect
residual stress
superalloy VAT 32
water vapor
activation energy
small angle neutron scattering
superalloy VAT 36
metallic glass
iron aluminides
Gr.91
internal stress
relaxation fatigue
multiaxiality
creep grain boundary
grain boundary cavitation
cavitation
solute atom
stress exponent
external pressure
P92
TMA
low cycle fatigue
nanoindentation
high temperature
FEM
intrinsic ductility
normalizing
creep ductility
creep rupture mechanism
microstructural features
simulate HAZ
P92 steel
glide
ferritic–martensitic steel
creep rupture
cyclic softening
3-03921-878-6
Spigarelli, Stefano auth
language English
format eBook
author Gariboldi, Elisabetta
spellingShingle Gariboldi, Elisabetta
Creep and High Temperature Deformation of Metals and Alloys
author_facet Gariboldi, Elisabetta
Spigarelli, Stefano
author_variant e g eg
author2 Spigarelli, Stefano
author2_variant s s ss
author_sort Gariboldi, Elisabetta
title Creep and High Temperature Deformation of Metals and Alloys
title_full Creep and High Temperature Deformation of Metals and Alloys
title_fullStr Creep and High Temperature Deformation of Metals and Alloys
title_full_unstemmed Creep and High Temperature Deformation of Metals and Alloys
title_auth Creep and High Temperature Deformation of Metals and Alloys
title_new Creep and High Temperature Deformation of Metals and Alloys
title_sort creep and high temperature deformation of metals and alloys
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2019
physical 1 electronic resource (212 p.)
isbn 3-03921-879-4
3-03921-878-6
illustrated Not Illustrated
work_keys_str_mv AT gariboldielisabetta creepandhightemperaturedeformationofmetalsandalloys
AT spigarellistefano creepandhightemperaturedeformationofmetalsandalloys
status_str n
ids_txt_mv (CKB)4100000010106335
(oapen)https://directory.doabooks.org/handle/20.500.12854/44233
(EXLCZ)994100000010106335
carrierType_str_mv cr
is_hierarchy_title Creep and High Temperature Deformation of Metals and Alloys
author2_original_writing_str_mv noLinkedField
_version_ 1796649071454191616
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04208nam-a2200961z--4500</leader><controlfield tag="001">993544116404498</controlfield><controlfield tag="005">20240107234105.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202102s2019 xx |||||o ||| 0|eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3-03921-879-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4100000010106335</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/44233</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994100000010106335</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gariboldi, Elisabetta</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Creep and High Temperature Deformation of Metals and Alloys</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (212 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated.This book includes recent contributions covering relevant topics and materials in the field in an innovative way. In the first section, contributions are related to the general description of creep deformation, damage, and ductility, while in the second section, innovative testing techniques of creep deformation are presented. The third section deals with creep in the presence of complex loading/temperature changes and environmental effects, while the last section focuses on material microstructure–creep correlations for specific material classes. The quality and potential of specific materials and microstructures, testing conditions, and modeling as addressed by specific contributions will surely inspire scientists and technicians in their own innovative approaches and studies on creep and high-temperature deformation.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Larson–Miller parameter</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">visualization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">bond coat</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hydrogen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">poly-crystal</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gibbs free energy principle</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">constitutive equations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">creep damage</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">DFT</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">finite element method</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">austenitic stainless steel</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">strain rate sensitivity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MCrAlY</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">excess volume</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">superalloy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">scanning electron microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">creep buckling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dislocation dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">creep</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">elevated temperature</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">modelling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">size effect</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">residual stress</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">superalloy VAT 32</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">water vapor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">activation energy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">small angle neutron scattering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">superalloy VAT 36</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">metallic glass</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">iron aluminides</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gr.91</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">internal stress</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">relaxation fatigue</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">multiaxiality</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">creep grain boundary</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">grain boundary cavitation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cavitation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">solute atom</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">stress exponent</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">external pressure</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">P92</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TMA</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">low cycle fatigue</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nanoindentation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">high temperature</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">FEM</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">intrinsic ductility</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">normalizing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">creep ductility</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">creep rupture mechanism</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">microstructural features</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">simulate HAZ</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">P92 steel</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">glide</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ferritic–martensitic steel</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">creep rupture</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cyclic softening</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03921-878-6</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spigarelli, Stefano</subfield><subfield code="4">auth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2024-01-08 05:58:30 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2020-02-01 22:26:53 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337557480004498&amp;Force_direct=true</subfield><subfield code="Z">5337557480004498</subfield><subfield code="b">Available</subfield><subfield code="8">5337557480004498</subfield></datafield></record></collection>