Radiation-induced and oxidative DNA damages

DNA stores and passes the genetic information of almost all living organisms. Its molecular structure and their intramolecular interactions are particularly suitable to maximize stability against oxidative stress and UV-light absorption. Yet the protection and repair strategies are still error-prone...

Full description

Saved in:
Bibliographic Details
Superior document:Frontiers Research Topics
:
Year of Publication:2015
Language:English
Series:Frontiers Research Topics
Physical Description:1 electronic resource (93 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993541086004498
ctrlnum (CKB)3710000000824751
(oapen)https://directory.doabooks.org/handle/20.500.12854/57569
(EXLCZ)993710000000824751
collection bib_alma
record_format marc
spelling Elise Dumont auth
Radiation-induced and oxidative DNA damages
Frontiers Media SA 2015
1 electronic resource (93 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Frontiers Research Topics
DNA stores and passes the genetic information of almost all living organisms. Its molecular structure and their intramolecular interactions are particularly suitable to maximize stability against oxidative stress and UV-light absorption. Yet the protection and repair strategies are still error-prone: DNA lesions are produced, including the most complex and highly mutagenic ones. An important threat to DNA stability comes from photosensitization, i.e. from the dramatic multiplication of radiation-induced defects mediated by the presence of organic or organometallic dyes compared to the direct exposure to UVA radiation. Moreover, the photo-induced production of singlet oxygen generates an extremely high oxidative stress on DNA that, in vivo, normally results in extended cellular apoptosis. Elucidating the processes leading to DNA damages, from the production of a simple radical entity to deleterious lesions, as well as the opportunities of repair by devoted enzymes, is a cornerstone towards the development of more efficient protection strategies. Sensitization and selective production of DNA lesions can also be exploited to induce the selective apoptosis of cancer cells upon exposition to radiation or to oxidative stress, for instance in the field of photodynamic therapy. The importance and relevance of the field is witnessed by the impressive amount of high-level papers dealing with this complex subject, and notably tackling the structural elucidation of DNA and DNA-drug adducts, the mechanisms of formation of DNA lesions (including the precise detection of the final lesion products), as well as the influence of the lesions on the DNA stability and dynamics and the consequences on the ease of repair. Due to the complexity of the field lying at the frontiers between chemistry, physics and biology, multidisciplinary strategies allying modeling and experience are needed. This topic aims at giving an extended overview of the current research in the domain, with fundamental contribution from the leading groups in the field of DNA reactivity, structural characterization, photo-chemistry and photo-physics, as well as repair mechanism. It will therefore be a fundamental guide for scientists wanting to address the field of DNA lesion and repair, but also more generally for researchers working in rational drug design or in the development of biomarkers and medical imaging techniques.
English
simulation and modeling
Analytical Chemistry
Radiation induced lesions
Oxidative damages
spectroscopy
Photochemistry and Photophysics
Photosensitization
DNA lesions
2-88919-660-7
Antonio Monari auth
Chryssostomos Chatgilialoglu auth
language English
format eBook
author Elise Dumont
spellingShingle Elise Dumont
Radiation-induced and oxidative DNA damages
Frontiers Research Topics
author_facet Elise Dumont
Antonio Monari
Chryssostomos Chatgilialoglu
author_variant e d ed
author2 Antonio Monari
Chryssostomos Chatgilialoglu
author2_variant a m am
c c cc
author_sort Elise Dumont
title Radiation-induced and oxidative DNA damages
title_full Radiation-induced and oxidative DNA damages
title_fullStr Radiation-induced and oxidative DNA damages
title_full_unstemmed Radiation-induced and oxidative DNA damages
title_auth Radiation-induced and oxidative DNA damages
title_new Radiation-induced and oxidative DNA damages
title_sort radiation-induced and oxidative dna damages
series Frontiers Research Topics
series2 Frontiers Research Topics
publisher Frontiers Media SA
publishDate 2015
physical 1 electronic resource (93 p.)
isbn 2-88919-660-7
illustrated Not Illustrated
work_keys_str_mv AT elisedumont radiationinducedandoxidativednadamages
AT antoniomonari radiationinducedandoxidativednadamages
AT chryssostomoschatgilialoglu radiationinducedandoxidativednadamages
status_str n
ids_txt_mv (CKB)3710000000824751
(oapen)https://directory.doabooks.org/handle/20.500.12854/57569
(EXLCZ)993710000000824751
carrierType_str_mv cr
hierarchy_parent_title Frontiers Research Topics
is_hierarchy_title Radiation-induced and oxidative DNA damages
container_title Frontiers Research Topics
author2_original_writing_str_mv noLinkedField
noLinkedField
_version_ 1787547913566552064
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03571nam-a2200385z--4500</leader><controlfield tag="001">993541086004498</controlfield><controlfield tag="005">20231214133054.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202102s2015 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)3710000000824751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/57569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)993710000000824751</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Elise Dumont</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Radiation-induced and oxidative DNA damages</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">Frontiers Media SA</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (93 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Frontiers Research Topics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">DNA stores and passes the genetic information of almost all living organisms. Its molecular structure and their intramolecular interactions are particularly suitable to maximize stability against oxidative stress and UV-light absorption. Yet the protection and repair strategies are still error-prone: DNA lesions are produced, including the most complex and highly mutagenic ones. An important threat to DNA stability comes from photosensitization, i.e. from the dramatic multiplication of radiation-induced defects mediated by the presence of organic or organometallic dyes compared to the direct exposure to UVA radiation. Moreover, the photo-induced production of singlet oxygen generates an extremely high oxidative stress on DNA that, in vivo, normally results in extended cellular apoptosis. Elucidating the processes leading to DNA damages, from the production of a simple radical entity to deleterious lesions, as well as the opportunities of repair by devoted enzymes, is a cornerstone towards the development of more efficient protection strategies. Sensitization and selective production of DNA lesions can also be exploited to induce the selective apoptosis of cancer cells upon exposition to radiation or to oxidative stress, for instance in the field of photodynamic therapy. The importance and relevance of the field is witnessed by the impressive amount of high-level papers dealing with this complex subject, and notably tackling the structural elucidation of DNA and DNA-drug adducts, the mechanisms of formation of DNA lesions (including the precise detection of the final lesion products), as well as the influence of the lesions on the DNA stability and dynamics and the consequences on the ease of repair. Due to the complexity of the field lying at the frontiers between chemistry, physics and biology, multidisciplinary strategies allying modeling and experience are needed. This topic aims at giving an extended overview of the current research in the domain, with fundamental contribution from the leading groups in the field of DNA reactivity, structural characterization, photo-chemistry and photo-physics, as well as repair mechanism. It will therefore be a fundamental guide for scientists wanting to address the field of DNA lesion and repair, but also more generally for researchers working in rational drug design or in the development of biomarkers and medical imaging techniques.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">simulation and modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytical Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Radiation induced lesions</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Oxidative damages</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">spectroscopy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Photochemistry and Photophysics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Photosensitization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">DNA lesions</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">2-88919-660-7</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antonio Monari</subfield><subfield code="4">auth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chryssostomos Chatgilialoglu</subfield><subfield code="4">auth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:41:52 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2016-08-13 16:41:26 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337068370004498&amp;Force_direct=true</subfield><subfield code="Z">5337068370004498</subfield><subfield code="b">Available</subfield><subfield code="8">5337068370004498</subfield></datafield></record></collection>