Mathematical modeling of blood-gas kinetics for the volatile organic compounds isoprene and acetone / by Julian King

ger: Breath gas analysis is based on the compelling concept that the exhaled breath levels of endogenously produced volatile organic compounds (VOCs) can provide a direct, non-invasive window to the blood and hence, by inference, to the body. In this sense, breath VOCs are regarded as a comprehensiv...

Full description

Saved in:
Bibliographic Details
VerfasserIn:
Place / Publishing House:2010
Year of Publication:2010
Language:English
Subjects:
Classification:33.07 - Spektroskopie
42.10 - Theoretische Biologie
31.80 - Angewandte Mathematik
42.11 - Biomathematik. Biokybernetik
35.13 - Reaktionskinetik
Physical Description:VI, 184, 2 S.; Ill., graph. Darst.
Notes:Enth. u.a. 5 Veröff. d. Verf. aus den Jahren 2009 - 2010
Tags: Add Tag
No Tags, Be the first to tag this record!
id 990002201460504498
ctrlnum AC07809470
(AT-OBV)AC07809470
(Aleph)008359882ACC01
(DE-599)OBVAC07809470
(EXLNZ-43ACC_NETWORK)990083598820203331
collection bib_alma
institution YWOAW
building MAG1-3
record_format marc
spelling King, Julian aut
Mathematical modeling of blood-gas kinetics for the volatile organic compounds isoprene and acetone by Julian King
2010
VI, 184, 2 S. Ill., graph. Darst.
Enth. u.a. 5 Veröff. d. Verf. aus den Jahren 2009 - 2010
Innsbruck, Univ., Diss., 2010
ger: Breath gas analysis is based on the compelling concept that the exhaled breath levels of endogenously produced volatile organic compounds (VOCs) can provide a direct, non-invasive window to the blood and hence, by inference, to the body. In this sense, breath VOCs are regarded as a comprehensive repository of valuable physiological and clinical information, that might be exploited in such diverse areas as diagnostics, therapeutic monitoring or general dynamic assessments of metabolic function, pharmacodynamics (e.g., in drug testing) and environmental exposure (e.g., in occupational health). Despite this enormous potential, the lack of standardized breath sampling regimes as well as the poor mechanistic understanding of VOC exhalation kinetics could cast a cloud over the widespread use of breath gas analysis in the biomedical sciences. In this context, a primary goal of the present thesis is to provide a better quantitative insight into the breath behavior of two prototypic VOCs, isoprene and acetone. A compartmental modeling framework is developed and validated by virtue of real-time breath measurements of these trace gases during distinct physiological states. In particular, the influence of various hemodynamic and ventilatory parameters on VOC concentrations in exhaled breath is investigated. This approach also complements previous steady state investigations in toxicology. From a phenomenological point of view, both acetone and isoprene concentrations in end-tidal breath are demonstrated to exhibit a reproducible non-steady state behavior during moderate workload challenges on a stationary bicycle. However, these dynamics depart drastically from what is expected on the basis of classical pulmonary inert gas elimination theory. More specifically, the start of exercise is accompanied by an abrupt increase in breath isoprene levels, usually by a factor of 3 to 4 compared with the steady state value during rest. This phase is followed by a gradual decline and the development of a new steady state after about 15 min of pedaling.<br />Acetone concentrations closely resemble the profile of alveolar ventilation, resulting in slightly increased, roughly stable levels during the individual workload segments. While for acetone the above-mentioned discrepancy can be explained by reference to gas exchange mechanisms in the conductive airways, a major part of breath isoprene variability during exercise conditions can be attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue source of isoprene are presented. The results discussed within the framework of this thesis are a first step towards new guidelines for the breath gas analysis of isoprene as well as acetone and are expected to have general relevance for quantitatively examining the exhalation, storage, transport, and biotransformation processes associated with volatile organic compounds in vivo.
Atemgasanalyse s (DE-588)4260324-9
Isopren s (DE-588)4192394-7
Aceton s (DE-588)4141244-8
Reaktionskinetik s (DE-588)4048655-2
Mathematisches Modell s (DE-588)4114528-8
AT-OBV UBIAM
YWOAW MAG1-3 38814-C.Stip. 2214197770004498
language English
format Thesis
Book
author King, Julian
spellingShingle King, Julian
Mathematical modeling of blood-gas kinetics for the volatile organic compounds isoprene and acetone
Atemgasanalyse (DE-588)4260324-9
Isopren (DE-588)4192394-7
Aceton (DE-588)4141244-8
Reaktionskinetik (DE-588)4048655-2
Mathematisches Modell (DE-588)4114528-8
author_facet King, Julian
author_variant j k jk
author_role VerfasserIn
author_sort King, Julian
title Mathematical modeling of blood-gas kinetics for the volatile organic compounds isoprene and acetone
title_full Mathematical modeling of blood-gas kinetics for the volatile organic compounds isoprene and acetone by Julian King
title_fullStr Mathematical modeling of blood-gas kinetics for the volatile organic compounds isoprene and acetone by Julian King
title_full_unstemmed Mathematical modeling of blood-gas kinetics for the volatile organic compounds isoprene and acetone by Julian King
title_auth Mathematical modeling of blood-gas kinetics for the volatile organic compounds isoprene and acetone
title_new Mathematical modeling of blood-gas kinetics for the volatile organic compounds isoprene and acetone
title_sort mathematical modeling of blood-gas kinetics for the volatile organic compounds isoprene and acetone
publishDate 2010
physical VI, 184, 2 S. Ill., graph. Darst.
callnumber-raw 38814-C.Stip.
callnumber-search 38814-C.Stip.
topic Atemgasanalyse (DE-588)4260324-9
Isopren (DE-588)4192394-7
Aceton (DE-588)4141244-8
Reaktionskinetik (DE-588)4048655-2
Mathematisches Modell (DE-588)4114528-8
topic_facet Atemgasanalyse
Isopren
Aceton
Reaktionskinetik
Mathematisches Modell
illustrated Illustrated
work_keys_str_mv AT kingjulian mathematicalmodelingofbloodgaskineticsforthevolatileorganiccompoundsisopreneandacetone
status_str n
ids_txt_mv (AT-OBV)AC07809470
AC07809470
(Aleph)008359882ACC01
(DE-599)OBVAC07809470
(EXLNZ-43ACC_NETWORK)990083598820203331
hol852bOwn_txt_mv YWOAW
hol852hSignatur_txt_mv 38814-C.Stip.
hol852cSonderstandort_txt_mv MAG1-3
itmData_txt_mv 2011-04-28 02:00:00 Europe/Vienna
barcode_str_mv +YW17735601
callnumbers_txt_mv 38814-C.Stip.
inventoryNumbers_str_mv 2011-38814-C.Stip.
materialTypes_str_mv BOOK
permanentLibraries_str_mv YWOAW
permanentLocations_str_mv MAG1-3
inventoryDates_str_mv 20110428
createdDates_str_mv 2011-04-28 02:00:00 Europe/Vienna
holdingIds_str_mv 2214197770004498
is_hierarchy_id AC07809470
is_hierarchy_title Mathematical modeling of blood-gas kinetics for the volatile organic compounds isoprene and acetone
basiskl_str_mv 33.07 - Spektroskopie
42.10 - Theoretische Biologie
31.80 - Angewandte Mathematik
42.11 - Biomathematik. Biokybernetik
35.13 - Reaktionskinetik
basiskl_txtF_mv 33.07 - Spektroskopie
42.10 - Theoretische Biologie
31.80 - Angewandte Mathematik
42.11 - Biomathematik. Biokybernetik
35.13 - Reaktionskinetik
_version_ 1794353459810533376
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05170nam#a2200529#c#4500</leader><controlfield tag="001">990002201460504498</controlfield><controlfield tag="005">20230127185059.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">110111|2010####|||######m####|||#|#eng#c</controlfield><controlfield tag="009">AC07809470</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">OeBB</subfield><subfield code="2">oeb</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(AT-OBV)AC07809470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">AC07809470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Aleph)008359882ACC01</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC07809470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLNZ-43ACC_NETWORK)990083598820203331</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UBI</subfield><subfield code="b">ger</subfield><subfield code="c">OPUS</subfield><subfield code="d">AT-UBI</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="c">XA-AT</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">King, Julian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical modeling of blood-gas kinetics for the volatile organic compounds isoprene and acetone</subfield><subfield code="c">by Julian King</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 184, 2 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Enth. u.a. 5 Veröff. d. Verf. aus den Jahren 2009 - 2010</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Innsbruck, Univ., Diss., 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ger: Breath gas analysis is based on the compelling concept that the exhaled breath levels of endogenously produced volatile organic compounds (VOCs) can provide a direct, non-invasive window to the blood and hence, by inference, to the body. In this sense, breath VOCs are regarded as a comprehensive repository of valuable physiological and clinical information, that might be exploited in such diverse areas as diagnostics, therapeutic monitoring or general dynamic assessments of metabolic function, pharmacodynamics (e.g., in drug testing) and environmental exposure (e.g., in occupational health). Despite this enormous potential, the lack of standardized breath sampling regimes as well as the poor mechanistic understanding of VOC exhalation kinetics could cast a cloud over the widespread use of breath gas analysis in the biomedical sciences. In this context, a primary goal of the present thesis is to provide a better quantitative insight into the breath behavior of two prototypic VOCs, isoprene and acetone. A compartmental modeling framework is developed and validated by virtue of real-time breath measurements of these trace gases during distinct physiological states. In particular, the influence of various hemodynamic and ventilatory parameters on VOC concentrations in exhaled breath is investigated. This approach also complements previous steady state investigations in toxicology. From a phenomenological point of view, both acetone and isoprene concentrations in end-tidal breath are demonstrated to exhibit a reproducible non-steady state behavior during moderate workload challenges on a stationary bicycle. However, these dynamics depart drastically from what is expected on the basis of classical pulmonary inert gas elimination theory. More specifically, the start of exercise is accompanied by an abrupt increase in breath isoprene levels, usually by a factor of 3 to 4 compared with the steady state value during rest. This phase is followed by a gradual decline and the development of a new steady state after about 15 min of pedaling.&lt;br /&gt;Acetone concentrations closely resemble the profile of alveolar ventilation, resulting in slightly increased, roughly stable levels during the individual workload segments. While for acetone the above-mentioned discrepancy can be explained by reference to gas exchange mechanisms in the conductive airways, a major part of breath isoprene variability during exercise conditions can be attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue source of isoprene are presented. The results discussed within the framework of this thesis are a first step towards new guidelines for the breath gas analysis of isoprene as well as acetone and are expected to have general relevance for quantitatively examining the exhalation, storage, transport, and biotransformation processes associated with volatile organic compounds in vivo.</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Atemgasanalyse</subfield><subfield code="D">s</subfield><subfield code="0">(DE-588)4260324-9</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Isopren</subfield><subfield code="D">s</subfield><subfield code="0">(DE-588)4192394-7</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Aceton</subfield><subfield code="D">s</subfield><subfield code="0">(DE-588)4141244-8</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Reaktionskinetik</subfield><subfield code="D">s</subfield><subfield code="0">(DE-588)4048655-2</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Mathematisches Modell</subfield><subfield code="D">s</subfield><subfield code="0">(DE-588)4114528-8</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">AT-OBV</subfield><subfield code="5">UBIAM</subfield></datafield><datafield tag="970" ind1="1" ind2=" "><subfield code="c">23</subfield></datafield><datafield tag="970" ind1="2" ind2=" "><subfield code="d">HS-DISS</subfield></datafield><datafield tag="970" ind1="0" ind2=" "><subfield code="a">OPUS21533</subfield></datafield><datafield tag="971" ind1="1" ind2=" "><subfield code="a">Unterkofler, Karl</subfield></datafield><datafield tag="971" ind1="1" ind2=" "><subfield code="a">Teschl, Gerald</subfield></datafield><datafield tag="971" ind1="3" ind2=" "><subfield code="a">2010-11</subfield></datafield><datafield tag="971" ind1="4" ind2=" "><subfield code="a">Dr. rer. nat.</subfield></datafield><datafield tag="971" ind1="5" ind2=" "><subfield code="a">Universität Innsbruck</subfield><subfield code="b">Fakultät für Mathematik, Informatik und Physik</subfield><subfield code="c">Institut für Mathematik</subfield><subfield code="d">702</subfield></datafield><datafield tag="971" ind1="8" ind2=" "><subfield code="a">Atemgasanalytik / volatile organische Substanzen / Aceton / Isopren / Modellierung / Protonen-Transfer-Reaktions-Massenspektrometrie</subfield></datafield><datafield tag="971" ind1="9" ind2=" "><subfield code="a">breath gas analysis / volatile organic compounds / acetone / isoprene / modeling / proton transfer reaction mass spectrometry / gas chromatography mass spectrometry</subfield></datafield><datafield tag="971" ind1="9" ind2=" "><subfield code="a">breath gas analysis - volatile organic compounds - acetone - isoprene - modeling - proton transfer reaction mass spectrometry - gas chromatography mass spectrometry</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2024-03-23 21:11:13 Europe/Vienna</subfield><subfield code="d">20</subfield><subfield code="f">System</subfield><subfield code="c">marc21</subfield><subfield code="a">2018-12-24 05:21:26 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="HOL" ind1="8" ind2=" "><subfield code="b">YWOAW</subfield><subfield code="h"> 38814-C.Stip. </subfield><subfield code="c">MAG1-3</subfield><subfield code="8">2214197770004498</subfield></datafield><datafield tag="852" ind1="8" ind2=" "><subfield code="b">YWOAW</subfield><subfield code="c">MAG1-3</subfield><subfield code="h"> 38814-C.Stip. </subfield><subfield code="8">2214197770004498</subfield></datafield><datafield tag="ITM" ind1=" " ind2=" "><subfield code="9">2214197770004498</subfield><subfield code="e">1</subfield><subfield code="m">BOOK</subfield><subfield code="b">+YW17735601</subfield><subfield code="i">2011-38814-C.Stip.</subfield><subfield code="2">MAG1-3</subfield><subfield code="o">20110428</subfield><subfield code="8">2314197760004498</subfield><subfield code="f">02</subfield><subfield code="p">2011-04-28 02:00:00 Europe/Vienna</subfield><subfield code="h">38814-C.Stip.</subfield><subfield code="1">YWOAW</subfield><subfield code="q">2022-06-09 11:16:41 Europe/Vienna</subfield></datafield></record></collection>