Periodic Differential Equations in the Plane : : A Topological Perspective / / Rafael Ortega.

Periodic differential equations appear in many contexts such as in the theory of nonlinear oscillators, in celestial mechanics, or in population dynamics with seasonal effects. The most traditional approach to study these equations is based on the introduction of small parameters, but the search of...

Full description

Saved in:
Bibliographic Details
Superior document:Title is part of eBook package: De Gruyter DG Plus DeG Package 2019 Part 1
VerfasserIn:
Place / Publishing House:Berlin ;, Boston : : De Gruyter, , [2019]
©2019
Year of Publication:2019
Language:English
Series:De Gruyter Series in Nonlinear Analysis and Applications , 29
Online Access:
Physical Description:1 online resource (XI, 184 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Other title:Frontmatter --
Preface --
Contents --
1. Periodic differential equations and isotopies --
2. Massera’s theorems --
3. Free embeddings of the plane --
4. Index of stable fixed points and periodic solutions --
5. Proof of the arc translation lemma --
6. Appendix on degree theory --
7. Solutions to the exercises --
Bibliography --
Index --
De Gruyter Series in Nonlinear Analysis and Applications
Summary:Periodic differential equations appear in many contexts such as in the theory of nonlinear oscillators, in celestial mechanics, or in population dynamics with seasonal effects. The most traditional approach to study these equations is based on the introduction of small parameters, but the search of nonlocal results leads to the application of several topological tools. Examples are fixed point theorems, degree theory, or bifurcation theory. These well-known methods are valid for equations of arbitrary dimension and they are mainly employed to prove the existence of periodic solutions. Following the approach initiated by Massera, this book presents some more delicate techniques whose validity is restricted to two dimensions. These typically produce additional dynamical information such as the instability of periodic solutions, the convergence of all solutions to periodic solutions, or connections between the number of harmonic and subharmonic solutions. The qualitative study of periodic planar equations leads naturally to a class of discrete dynamical systems generated by homeomorphisms or embeddings of the plane. To study these maps, Brouwer introduced the notion of a translation arc, somehow mimicking the notion of an orbit in continuous dynamical systems. The study of the properties of these translation arcs is full of intuition and often leads to "non-rigorous proofs". In the book, complete proofs following ideas developed by Brown are presented and the final conclusion is the Arc Translation Lemma, a counterpart of the Poincaré–Bendixson theorem for discrete dynamical systems. Applications to differential equations and discussions on the topology of the plane are the two themes that alternate throughout the five chapters of the book.
Format:Mode of access: Internet via World Wide Web.
ISBN:9783110551167
9783110762464
9783110719567
9783110647099
9783110616859
9783110610765
9783110664232
9783110610406
9783110606362
ISSN:0941-813X ;
DOI:10.1515/9783110551167
Access:restricted access
Hierarchical level:Monograph
Statement of Responsibility: Rafael Ortega.