Rigid Local Systems. (AM-139), Volume 139 / / Nicholas M. Katz.

Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to...

Full description

Saved in:
Bibliographic Details
Superior document:Title is part of eBook package: De Gruyter Princeton Annals of Mathematics eBook-Package 1940-2020
VerfasserIn:
Place / Publishing House:Princeton, NJ : : Princeton University Press, , [2016]
©1996
Year of Publication:2016
Language:English
Series:Annals of Mathematics Studies ; 139
Online Access:
Physical Description:1 online resource (219 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 08167nam a22019335i 4500
001 9781400882595
003 DE-B1597
005 20220131112047.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 220131t20161996nju fo d z eng d
020 |a 9781400882595 
024 7 |a 10.1515/9781400882595  |2 doi 
035 |a (DE-B1597)467916 
035 |a (OCoLC)979743328 
040 |a DE-B1597  |b eng  |c DE-B1597  |e rda 
041 0 |a eng 
044 |a nju  |c US-NJ 
050 4 |a QA372  |b .K35 1996 
072 7 |a MAT012040  |2 bisacsh 
082 0 4 |a 515/.35  |2 23 
100 1 |a Katz, Nicholas M.,   |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Rigid Local Systems. (AM-139), Volume 139 /  |c Nicholas M. Katz. 
264 1 |a Princeton, NJ :   |b Princeton University Press,   |c [2016] 
264 4 |c ©1996 
300 |a 1 online resource (219 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 0 |a Annals of Mathematics Studies ;  |v 139 
505 0 0 |t Frontmatter --   |t Contents --   |t Introduction --   |t CHAPTER 1. First results on rigid local systems --   |t CHAPTER 2. The theory of middle convolution --   |t CHAPTER 3. Fourier Transform and rigidity --   |t CHAPTER 4. Middle convolution: dependence on parameters --   |t CHAPTER 5. Structure of rigid local systems --   |t CHAPTER 6. Existence algorithms for rigids --   |t CHAPTER 7. Diophantine aspects of rigidity --   |t CHAPTER 8. Motivic description of rigids --   |t CHAPTER 9. Grothendieck's p-curvature conjecture for rigids --   |t References 
506 0 |a restricted access  |u http://purl.org/coar/access_right/c_16ec  |f online access with authorization  |2 star 
520 |a Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1,infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard nth order generalizations of the hypergeometric function, n F n-1's, and the Pochhammer hypergeometric functions. This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems. Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the l-adic Fourier Transform. 
530 |a Issued also in print. 
538 |a Mode of access: Internet via World Wide Web. 
546 |a In English. 
588 0 |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 31. Jan 2022) 
650 0 |a Differential equations  |x Numerical solutions. 
650 0 |a Hypergeometric functions. 
650 0 |a Sheaf theory. 
650 7 |a MATHEMATICS / Geometry / Non-Euclidean.  |2 bisacsh 
653 |a Additive group. 
653 |a Alexander Grothendieck. 
653 |a Algebraic closure. 
653 |a Algebraic differential equation. 
653 |a Algebraically closed field. 
653 |a Algorithm. 
653 |a Analytic continuation. 
653 |a Automorphism. 
653 |a Axiom of choice. 
653 |a Bernhard Riemann. 
653 |a Big O notation. 
653 |a Calculation. 
653 |a Carlos Simpson. 
653 |a Coefficient. 
653 |a Cohomology. 
653 |a Commutator. 
653 |a Compactification (mathematics). 
653 |a Comparison theorem. 
653 |a Complex analytic space. 
653 |a Complex conjugate. 
653 |a Complex manifold. 
653 |a Conjecture. 
653 |a Conjugacy class. 
653 |a Convolution. 
653 |a Corollary. 
653 |a Cube root. 
653 |a Cusp form. 
653 |a De Rham cohomology. 
653 |a Differential equation. 
653 |a Dimension. 
653 |a Dimensional analysis. 
653 |a Discrete valuation ring. 
653 |a Disjoint union. 
653 |a Divisor. 
653 |a Duality (mathematics). 
653 |a Eigenfunction. 
653 |a Eigenvalues and eigenvectors. 
653 |a Elliptic curve. 
653 |a Equation. 
653 |a Equivalence of categories. 
653 |a Exact sequence. 
653 |a Existential quantification. 
653 |a Finite field. 
653 |a Finite set. 
653 |a Fourier transform. 
653 |a Functor. 
653 |a Fundamental group. 
653 |a Generic point. 
653 |a Ground field. 
653 |a Hodge structure. 
653 |a Hypergeometric function. 
653 |a Integer. 
653 |a Invertible matrix. 
653 |a Isomorphism class. 
653 |a Jordan normal form. 
653 |a Level of measurement. 
653 |a Linear differential equation. 
653 |a Local system. 
653 |a Mathematical induction. 
653 |a Mathematics. 
653 |a Matrix (mathematics). 
653 |a Monodromy. 
653 |a Monomial. 
653 |a Morphism. 
653 |a Natural filtration. 
653 |a Parameter. 
653 |a Parity (mathematics). 
653 |a Perfect field. 
653 |a Perverse sheaf. 
653 |a Polynomial. 
653 |a Prime number. 
653 |a Projective representation. 
653 |a Projective space. 
653 |a Pullback (category theory). 
653 |a Pullback. 
653 |a Rational function. 
653 |a Regular singular point. 
653 |a Relative dimension. 
653 |a Residue field. 
653 |a Ring of integers. 
653 |a Root of unity. 
653 |a Sequence. 
653 |a Sesquilinear form. 
653 |a Set (mathematics). 
653 |a Sheaf (mathematics). 
653 |a Six operations. 
653 |a Special case. 
653 |a Subgroup. 
653 |a Subobject. 
653 |a Subring. 
653 |a Suggestion. 
653 |a Summation. 
653 |a Tensor product. 
653 |a Theorem. 
653 |a Theory. 
653 |a Topology. 
653 |a Triangular matrix. 
653 |a Trivial representation. 
653 |a Vector space. 
653 |a Zariski topology. 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t Princeton Annals of Mathematics eBook-Package 1940-2020  |z 9783110494914  |o ZDB-23-PMB 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t Princeton University Press eBook-Package Archive 1927-1999  |z 9783110442496 
776 0 |c print  |z 9780691011189 
856 4 0 |u https://doi.org/10.1515/9781400882595 
856 4 0 |u https://www.degruyter.com/isbn/9781400882595 
856 4 2 |3 Cover  |u https://www.degruyter.com/document/cover/isbn/9781400882595/original 
912 |a 978-3-11-044249-6 Princeton University Press eBook-Package Archive 1927-1999  |c 1927  |d 1999 
912 |a EBA_BACKALL 
912 |a EBA_CL_MTPY 
912 |a EBA_EBACKALL 
912 |a EBA_EBKALL 
912 |a EBA_ECL_MTPY 
912 |a EBA_EEBKALL 
912 |a EBA_ESTMALL 
912 |a EBA_PPALL 
912 |a EBA_STMALL 
912 |a GBV-deGruyter-alles 
912 |a PDA12STME 
912 |a PDA13ENGE 
912 |a PDA18STMEE 
912 |a PDA5EBK 
912 |a ZDB-23-PMB  |c 1940  |d 2020