On the Tangent Space to the Space of Algebraic Cycles on a Smooth Algebraic Variety. (AM-157) / / Mark Green, Phillip A. Griffiths.

In recent years, considerable progress has been made in studying algebraic cycles using infinitesimal methods. These methods have usually been applied to Hodge-theoretic constructions such as the cycle class and the Abel-Jacobi map. Substantial advances have also occurred in the infinitesimal theory...

Full description

Saved in:
Bibliographic Details
Superior document:Title is part of eBook package: De Gruyter Princeton Annals of Mathematics eBook-Package 1940-2020
VerfasserIn:
Place / Publishing House:Princeton, NJ : : Princeton University Press, , [2004]
©2005
Year of Publication:2004
Edition:Course Book
Language:English
Series:Annals of Mathematics Studies ; 157
Online Access:
Physical Description:1 online resource (208 p.) :; 10 line illus.
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 08123nam a22019095i 4500
001 9781400837175
003 DE-B1597
005 20220131112047.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 220131t20042005nju fo d z eng d
020 |a 9781400837175 
024 7 |a 10.1515/9781400837175  |2 doi 
035 |a (DE-B1597)446528 
035 |a (OCoLC)979577405 
040 |a DE-B1597  |b eng  |c DE-B1597  |e rda 
041 0 |a eng 
044 |a nju  |c US-NJ 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Green, Mark,   |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a On the Tangent Space to the Space of Algebraic Cycles on a Smooth Algebraic Variety. (AM-157) /  |c Mark Green, Phillip A. Griffiths. 
250 |a Course Book 
264 1 |a Princeton, NJ :   |b Princeton University Press,   |c [2004] 
264 4 |c ©2005 
300 |a 1 online resource (208 p.) :  |b 10 line illus. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 0 |a Annals of Mathematics Studies ;  |v 157 
505 0 0 |t Frontmatter --   |t Contents --   |t Abstract --   |t Chapter One. Introduction --   |t Chapter Two. The Classical Case When n = 1 --   |t Chapter Three. Differential Geometry of Symmetric Products --   |t Chapter Four. Absolute Differentials (I) --   |t Chapter Five Geometric Description of T̳Zn(X) --   |t Chapter Six. Absolute Differentials (II) --   |t Chapter Seven. The Ext-definition of TZ2(X) for X an Algebraic Surface --   |t Chapter Eight. Tangents to Related Spaces --   |t Chapter Nine. Applications and Examples --   |t Chapter Ten. Speculations and Questions --   |t Bibliography --   |t Index 
506 0 |a restricted access  |u http://purl.org/coar/access_right/c_16ec  |f online access with authorization  |2 star 
520 |a In recent years, considerable progress has been made in studying algebraic cycles using infinitesimal methods. These methods have usually been applied to Hodge-theoretic constructions such as the cycle class and the Abel-Jacobi map. Substantial advances have also occurred in the infinitesimal theory for subvarieties of a given smooth variety, centered around the normal bundle and the obstructions coming from the normal bundle's first cohomology group. Here, Mark Green and Phillip Griffiths set forth the initial stages of an infinitesimal theory for algebraic cycles. The book aims in part to understand the geometric basis and the limitations of Spencer Bloch's beautiful formula for the tangent space to Chow groups. Bloch's formula is motivated by algebraic K-theory and involves differentials over Q. The theory developed here is characterized by the appearance of arithmetic considerations even in the local infinitesimal theory of algebraic cycles. The map from the tangent space to the Hilbert scheme to the tangent space to algebraic cycles passes through a variant of an interesting construction in commutative algebra due to Angéniol and Lejeune-Jalabert. The link between the theory given here and Bloch's formula arises from an interpretation of the Cousin flasque resolution of differentials over Q as the tangent sequence to the Gersten resolution in algebraic K-theory. The case of 0-cycles on a surface is used for illustrative purposes to avoid undue technical complications. 
530 |a Issued also in print. 
538 |a Mode of access: Internet via World Wide Web. 
546 |a In English. 
588 0 |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 31. Jan 2022) 
650 7 |a MATHEMATICS / Algebra / Abstract.  |2 bisacsh 
653 |a Addition. 
653 |a Algebraic K-theory. 
653 |a Algebraic character. 
653 |a Algebraic curve. 
653 |a Algebraic cycle. 
653 |a Algebraic function. 
653 |a Algebraic geometry. 
653 |a Algebraic number. 
653 |a Algebraic surface. 
653 |a Algebraic variety. 
653 |a Analytic function. 
653 |a Approximation. 
653 |a Arithmetic. 
653 |a Chow group. 
653 |a Codimension. 
653 |a Coefficient. 
653 |a Coherent sheaf cohomology. 
653 |a Coherent sheaf. 
653 |a Cohomology. 
653 |a Cokernel. 
653 |a Combination. 
653 |a Compass-and-straightedge construction. 
653 |a Complex geometry. 
653 |a Complex number. 
653 |a Computable function. 
653 |a Conjecture. 
653 |a Coordinate system. 
653 |a Coprime integers. 
653 |a Corollary. 
653 |a Cotangent bundle. 
653 |a Diagram (category theory). 
653 |a Differential equation. 
653 |a Differential form. 
653 |a Differential geometry of surfaces. 
653 |a Dimension (vector space). 
653 |a Dimension. 
653 |a Divisor. 
653 |a Duality (mathematics). 
653 |a Elliptic function. 
653 |a Embedding. 
653 |a Equation. 
653 |a Equivalence class. 
653 |a Equivalence relation. 
653 |a Exact sequence. 
653 |a Existence theorem. 
653 |a Existential quantification. 
653 |a Fermat's theorem. 
653 |a Formal proof. 
653 |a Fourier. 
653 |a Free group. 
653 |a Functional equation. 
653 |a Generic point. 
653 |a Geometry. 
653 |a Group homomorphism. 
653 |a Hereditary property. 
653 |a Hilbert scheme. 
653 |a Homomorphism. 
653 |a Injective function. 
653 |a Integer. 
653 |a Integral curve. 
653 |a K-group. 
653 |a K-theory. 
653 |a Linear combination. 
653 |a Mathematics. 
653 |a Moduli (physics). 
653 |a Moduli space. 
653 |a Multivector. 
653 |a Natural number. 
653 |a Natural transformation. 
653 |a Neighbourhood (mathematics). 
653 |a Open problem. 
653 |a Parameter. 
653 |a Polynomial ring. 
653 |a Principal part. 
653 |a Projective variety. 
653 |a Quantity. 
653 |a Rational function. 
653 |a Rational mapping. 
653 |a Reciprocity law. 
653 |a Regular map (graph theory). 
653 |a Residue theorem. 
653 |a Root of unity. 
653 |a Scientific notation. 
653 |a Sheaf (mathematics). 
653 |a Smoothness. 
653 |a Statistical significance. 
653 |a Subgroup. 
653 |a Summation. 
653 |a Tangent space. 
653 |a Tangent vector. 
653 |a Tangent. 
653 |a Terminology. 
653 |a Tetrahedron. 
653 |a Theorem. 
653 |a Transcendental function. 
653 |a Transcendental number. 
653 |a Uniqueness theorem. 
653 |a Vector field. 
653 |a Vector space. 
653 |a Zariski topology. 
700 1 |a Griffiths, Phillip A.,   |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t Princeton Annals of Mathematics eBook-Package 1940-2020  |z 9783110494914  |o ZDB-23-PMB 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t Princeton University Press eBook-Package Backlist 2000-2013  |z 9783110442502 
776 0 |c print  |z 9780691120447 
856 4 0 |u https://doi.org/10.1515/9781400837175 
856 4 0 |u https://www.degruyter.com/isbn/9781400837175 
856 4 2 |3 Cover  |u https://www.degruyter.com/document/cover/isbn/9781400837175/original 
912 |a 978-3-11-044250-2 Princeton University Press eBook-Package Backlist 2000-2013  |c 2000  |d 2013 
912 |a EBA_BACKALL 
912 |a EBA_CL_MTPY 
912 |a EBA_EBACKALL 
912 |a EBA_EBKALL 
912 |a EBA_ECL_MTPY 
912 |a EBA_EEBKALL 
912 |a EBA_ESTMALL 
912 |a EBA_PPALL 
912 |a EBA_STMALL 
912 |a GBV-deGruyter-alles 
912 |a PDA12STME 
912 |a PDA13ENGE 
912 |a PDA18STMEE 
912 |a PDA5EBK 
912 |a ZDB-23-PMB  |c 1940  |d 2020