Higher Topos Theory (AM-170) / / Jacob Lurie.

Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of th...

Full description

Saved in:
Bibliographic Details
Superior document:Title is part of eBook package: De Gruyter Princeton Annals of Mathematics eBook-Package 1940-2020
VerfasserIn:
Place / Publishing House:Princeton, NJ : : Princeton University Press, , [2009]
©2009
Year of Publication:2009
Edition:Course Book
Language:English
Series:Annals of Mathematics Studies ; 170
Online Access:
Physical Description:1 online resource (944 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 08035nam a22019455i 4500
001 9781400830558
003 DE-B1597
005 20220131112047.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 220131t20092009nju fo d z eng d
019 |a (OCoLC)990460716 
020 |a 9781400830558 
024 7 |a 10.1515/9781400830558  |2 doi 
035 |a (DE-B1597)446962 
035 |a (OCoLC)979881596 
040 |a DE-B1597  |b eng  |c DE-B1597  |e rda 
041 0 |a eng 
044 |a nju  |c US-NJ 
050 4 |a QA150 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.62 
100 1 |a Lurie, Jacob,   |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Higher Topos Theory (AM-170) /  |c Jacob Lurie. 
250 |a Course Book 
264 1 |a Princeton, NJ :   |b Princeton University Press,   |c [2009] 
264 4 |c ©2009 
300 |a 1 online resource (944 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 0 |a Annals of Mathematics Studies ;  |v 170 
505 0 0 |t Frontmatter --   |t Contents --   |t Preface --   |t Chapter One. An Overview Of Higher Category Theory --   |t Chapter Two. Fibrations Of Simplicial Sets --   |t Chapter Three. The ∞-Category Of ∞-Categories --   |t Chapter Four. Limits And Colimits --   |t Chapter Five. Presentable And Accessible ∞-Categories --   |t Chapter Six. ∞-Topoi --   |t Chapter Seven. Higher Topos Theory In Topology --   |t Appendix --   |t Bibliography --   |t General Index --   |t Index Of Notation 
506 0 |a restricted access  |u http://purl.org/coar/access_right/c_16ec  |f online access with authorization  |2 star 
520 |a Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language. The result is a powerful theory with applications in many areas of mathematics. The book's first five chapters give an exposition of the theory of infinity-categories that emphasizes their role as a generalization of ordinary categories. Many of the fundamental ideas from classical category theory are generalized to the infinity-categorical setting, such as limits and colimits, adjoint functors, ind-objects and pro-objects, locally accessible and presentable categories, Grothendieck fibrations, presheaves, and Yoneda's lemma. A sixth chapter presents an infinity-categorical version of the theory of Grothendieck topoi, introducing the notion of an infinity-topos, an infinity-category that resembles the infinity-category of topological spaces in the sense that it satisfies certain axioms that codify some of the basic principles of algebraic topology. A seventh and final chapter presents applications that illustrate connections between the theory of higher topoi and ideas from classical topology. 
530 |a Issued also in print. 
538 |a Mode of access: Internet via World Wide Web. 
546 |a In English. 
588 0 |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 31. Jan 2022) 
650 0 |a Categories (Mathematics). 
650 0 |a Toposes. 
650 7 |a MATHEMATICS / Algebra / Abstract.  |2 bisacsh 
653 |a Adjoint functors. 
653 |a Associative property. 
653 |a Base change map. 
653 |a Base change. 
653 |a CW complex. 
653 |a Canonical map. 
653 |a Cartesian product. 
653 |a Category of sets. 
653 |a Category theory. 
653 |a Coequalizer. 
653 |a Cofinality. 
653 |a Coherence theorem. 
653 |a Cohomology. 
653 |a Cokernel. 
653 |a Commutative property. 
653 |a Continuous function (set theory). 
653 |a Contractible space. 
653 |a Coproduct. 
653 |a Corollary. 
653 |a Derived category. 
653 |a Diagonal functor. 
653 |a Diagram (category theory). 
653 |a Dimension theory (algebra). 
653 |a Dimension theory. 
653 |a Dimension. 
653 |a Enriched category. 
653 |a Epimorphism. 
653 |a Equivalence class. 
653 |a Equivalence relation. 
653 |a Existence theorem. 
653 |a Existential quantification. 
653 |a Factorization system. 
653 |a Functor category. 
653 |a Functor. 
653 |a Fundamental group. 
653 |a Grothendieck topology. 
653 |a Grothendieck universe. 
653 |a Group homomorphism. 
653 |a Groupoid. 
653 |a Heyting algebra. 
653 |a Higher Topos Theory. 
653 |a Higher category theory. 
653 |a Homotopy category. 
653 |a Homotopy colimit. 
653 |a Homotopy group. 
653 |a Homotopy. 
653 |a I0. 
653 |a Inclusion map. 
653 |a Inductive dimension. 
653 |a Initial and terminal objects. 
653 |a Inverse limit. 
653 |a Isomorphism class. 
653 |a Kan extension. 
653 |a Limit (category theory). 
653 |a Localization of a category. 
653 |a Maximal element. 
653 |a Metric space. 
653 |a Model category. 
653 |a Monoidal category. 
653 |a Monoidal functor. 
653 |a Monomorphism. 
653 |a Monotonic function. 
653 |a Morphism. 
653 |a Natural transformation. 
653 |a Nisnevich topology. 
653 |a Noetherian topological space. 
653 |a Noetherian. 
653 |a O-minimal theory. 
653 |a Open set. 
653 |a Power series. 
653 |a Presheaf (category theory). 
653 |a Prime number. 
653 |a Pullback (category theory). 
653 |a Pushout (category theory). 
653 |a Quillen adjunction. 
653 |a Quotient by an equivalence relation. 
653 |a Regular cardinal. 
653 |a Retract. 
653 |a Right inverse. 
653 |a Sheaf (mathematics). 
653 |a Sheaf cohomology. 
653 |a Simplicial category. 
653 |a Simplicial set. 
653 |a Special case. 
653 |a Subcategory. 
653 |a Subset. 
653 |a Surjective function. 
653 |a Tensor product. 
653 |a Theorem. 
653 |a Topological space. 
653 |a Topology. 
653 |a Topos. 
653 |a Total order. 
653 |a Transitive relation. 
653 |a Universal property. 
653 |a Upper and lower bounds. 
653 |a Weak equivalence (homotopy theory). 
653 |a Yoneda lemma. 
653 |a Zariski topology. 
653 |a Zorn's lemma. 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t Princeton Annals of Mathematics eBook-Package 1940-2020  |z 9783110494914  |o ZDB-23-PMB 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t Princeton University Press eBook-Package Backlist 2000-2013  |z 9783110442502 
776 0 |c print  |z 9780691140490 
856 4 0 |u https://doi.org/10.1515/9781400830558 
856 4 0 |u https://www.degruyter.com/isbn/9781400830558 
856 4 2 |3 Cover  |u https://www.degruyter.com/document/cover/isbn/9781400830558/original 
912 |a 978-3-11-044250-2 Princeton University Press eBook-Package Backlist 2000-2013  |c 2000  |d 2013 
912 |a EBA_BACKALL 
912 |a EBA_CL_MTPY 
912 |a EBA_EBACKALL 
912 |a EBA_EBKALL 
912 |a EBA_ECL_MTPY 
912 |a EBA_EEBKALL 
912 |a EBA_ESTMALL 
912 |a EBA_PPALL 
912 |a EBA_STMALL 
912 |a GBV-deGruyter-alles 
912 |a PDA12STME 
912 |a PDA13ENGE 
912 |a PDA18STMEE 
912 |a PDA5EBK 
912 |a ZDB-23-PMB  |c 1940  |d 2020