Moments, Monodromy, and Perversity. (AM-159) : : A Diophantine Perspective. (AM-159) / / Nicholas M. Katz.

It is now some thirty years since Deligne first proved his general equidistribution theorem, thus establishing the fundamental result governing the statistical properties of suitably "pure" algebro-geometric families of character sums over finite fields (and of their associated L-functions...

Full description

Saved in:
Bibliographic Details
Superior document:Title is part of eBook package: De Gruyter Princeton Annals of Mathematics eBook-Package 1940-2020
VerfasserIn:
Place / Publishing House:Princeton, NJ : : Princeton University Press, , [2005]
©2006
Year of Publication:2005
Language:English
Series:Annals of Mathematics Studies ; 159
Online Access:
Physical Description:1 online resource (488 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 08308nam a22019335i 4500
001 9781400826957
003 DE-B1597
005 20220131112047.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 220131t20052006nju fo d z eng d
019 |a (OCoLC)990401978 
020 |a 9781400826957 
024 7 |a 10.1515/9781400826957  |2 doi 
035 |a (DE-B1597)467938 
035 |a (OCoLC)979968387 
040 |a DE-B1597  |b eng  |c DE-B1597  |e rda 
041 0 |a eng 
044 |a nju  |c US-NJ 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 512.7/3  |2 22 
100 1 |a Katz, Nicholas M.,   |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Moments, Monodromy, and Perversity. (AM-159) :  |b A Diophantine Perspective. (AM-159) /  |c Nicholas M. Katz. 
264 1 |a Princeton, NJ :   |b Princeton University Press,   |c [2005] 
264 4 |c ©2006 
300 |a 1 online resource (488 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 0 |a Annals of Mathematics Studies ;  |v 159 
505 0 0 |t Frontmatter --   |t Contents --   |t Introduction --   |t Chapter 1: Basic results on perversity and higher moments --   |t Chapter 2: How to apply the results of Chapter 1 --   |t Chapter 3: Additive character sums on An --   |t Chapter 4: Additive character sums on more general X --   |t Chapter 5: Multiplicative character sums on An --   |t Chapter 6: Middle additive convolution --   |t Appendix A6: Swan-minimal poles --   |t Chapter 7: Pullbacks to curves from A1 --   |t Chapter 8: One variable twists on curves --   |t Chapter 9: Weierstrass sheaves as inputs --   |t Chapter 10: Weierstrass families --   |t Chapter 11: FJTwist families and variants --   |t Chapter 12: Uniformity results --   |t Chapter 13: Average analytic rank and large N limits --   |t References --   |t Notation Index --   |t Subject Index 
506 0 |a restricted access  |u http://purl.org/coar/access_right/c_16ec  |f online access with authorization  |2 star 
520 |a It is now some thirty years since Deligne first proved his general equidistribution theorem, thus establishing the fundamental result governing the statistical properties of suitably "pure" algebro-geometric families of character sums over finite fields (and of their associated L-functions). Roughly speaking, Deligne showed that any such family obeys a "generalized Sato-Tate law," and that figuring out which generalized Sato-Tate law applies to a given family amounts essentially to computing a certain complex semisimple (not necessarily connected) algebraic group, the "geometric monodromy group" attached to that family. Up to now, nearly all techniques for determining geometric monodromy groups have relied, at least in part, on local information. In Moments, Monodromy, and Perversity, Nicholas Katz develops new techniques, which are resolutely global in nature. They are based on two vital ingredients, neither of which existed at the time of Deligne's original work on the subject. The first is the theory of perverse sheaves, pioneered by Goresky and MacPherson in the topological setting and then brilliantly transposed to algebraic geometry by Beilinson, Bernstein, Deligne, and Gabber. The second is Larsen's Alternative, which very nearly characterizes classical groups by their fourth moments. These new techniques, which are of great interest in their own right, are first developed and then used to calculate the geometric monodromy groups attached to some quite specific universal families of (L-functions attached to) character sums over finite fields. 
530 |a Issued also in print. 
538 |a Mode of access: Internet via World Wide Web. 
546 |a In English. 
588 0 |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 31. Jan 2022) 
650 0 |a L-functions. 
650 0 |a Monodromy groups. 
650 0 |a Sheaf theory. 
650 7 |a MATHEMATICS / General.  |2 bisacsh 
653 |a Addition. 
653 |a Additive group. 
653 |a Affine space. 
653 |a Algebraic group. 
653 |a Algebraic integer. 
653 |a Algebraically closed field. 
653 |a Automorphism. 
653 |a Base change. 
653 |a Big O notation. 
653 |a Central moment. 
653 |a Change of base. 
653 |a Character sum. 
653 |a Classical group. 
653 |a Codimension. 
653 |a Computation. 
653 |a Conjecture. 
653 |a Conjugacy class. 
653 |a Constant function. 
653 |a Convolution. 
653 |a Corollary. 
653 |a Critical value. 
653 |a Dense set. 
653 |a Determinant. 
653 |a Dimension (vector space). 
653 |a Dimension. 
653 |a Diophantine equation. 
653 |a Direct sum. 
653 |a Discrete group. 
653 |a Disjoint sets. 
653 |a Divisor (algebraic geometry). 
653 |a Divisor. 
653 |a Eigenvalues and eigenvectors. 
653 |a Elliptic curve. 
653 |a Empty set. 
653 |a Equidistribution theorem. 
653 |a Existential quantification. 
653 |a Exponential sum. 
653 |a Faithful representation. 
653 |a Finite field. 
653 |a Finite group. 
653 |a Fourier transform. 
653 |a Function field. 
653 |a Function space. 
653 |a Generic point. 
653 |a Group theory. 
653 |a Hypersurface. 
653 |a Inequality (mathematics). 
653 |a Integer. 
653 |a Irreducible representation. 
653 |a Isomorphism class. 
653 |a L-function. 
653 |a Leray spectral sequence. 
653 |a Linear space (geometry). 
653 |a Linear subspace. 
653 |a Moment (mathematics). 
653 |a Monodromy. 
653 |a Morphism. 
653 |a Natural number. 
653 |a Normal subgroup. 
653 |a Orthogonal group. 
653 |a P-value. 
653 |a Parameter space. 
653 |a Parameter. 
653 |a Parity (mathematics). 
653 |a Partition of a set. 
653 |a Perverse sheaf. 
653 |a Polynomial. 
653 |a Power series. 
653 |a Prime number. 
653 |a Probability space. 
653 |a Probability theory. 
653 |a Proper morphism. 
653 |a Pullback (category theory). 
653 |a Random variable. 
653 |a Reductive group. 
653 |a Relative dimension. 
653 |a Root of unity. 
653 |a Scalar multiplication. 
653 |a Scientific notation. 
653 |a Set (mathematics). 
653 |a Sheaf (mathematics). 
653 |a Special case. 
653 |a Subgroup. 
653 |a Subobject. 
653 |a Subset. 
653 |a Summation. 
653 |a Surjective function. 
653 |a Symmetric group. 
653 |a Symplectic group. 
653 |a Tensor product. 
653 |a Theorem. 
653 |a Theory. 
653 |a Topology. 
653 |a Trace (linear algebra). 
653 |a Trivial group. 
653 |a Unipotent. 
653 |a Variable (mathematics). 
653 |a Variance. 
653 |a Vector space. 
653 |a Zariski topology. 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t Princeton Annals of Mathematics eBook-Package 1940-2020  |z 9783110494914  |o ZDB-23-PMB 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t Princeton University Press eBook-Package Backlist 2000-2013  |z 9783110442502 
776 0 |c print  |z 9780691123295 
856 4 0 |u https://doi.org/10.1515/9781400826957 
856 4 0 |u https://www.degruyter.com/isbn/9781400826957 
856 4 2 |3 Cover  |u https://www.degruyter.com/document/cover/isbn/9781400826957/original 
912 |a 978-3-11-044250-2 Princeton University Press eBook-Package Backlist 2000-2013  |c 2000  |d 2013 
912 |a EBA_BACKALL 
912 |a EBA_CL_MTPY 
912 |a EBA_EBACKALL 
912 |a EBA_EBKALL 
912 |a EBA_ECL_MTPY 
912 |a EBA_EEBKALL 
912 |a EBA_ESTMALL 
912 |a EBA_PPALL 
912 |a EBA_STMALL 
912 |a GBV-deGruyter-alles 
912 |a PDA12STME 
912 |a PDA13ENGE 
912 |a PDA18STMEE 
912 |a PDA5EBK 
912 |a ZDB-23-PMB  |c 1940  |d 2020