When Least Is Best : : How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible / / Paul J. Nahin.

A mathematical journey through the most fascinating problems of extremes and how to solve themWhat is the best way to photograph a speeding bullet? How can lost hikers find their way out of a forest? Why does light move through glass in the least amount of time possible? When Least Is Best combines...

Full description

Saved in:
Bibliographic Details
Superior document:Title is part of eBook package: De Gruyter EBOOK PACKAGE COMPLETE 2021 English
VerfasserIn:
Place / Publishing House:Princeton, NJ : : Princeton University Press, , [2021]
©2003
Year of Publication:2021
Language:English
Series:Princeton Science Library ; 114
Online Access:
Physical Description:1 online resource (392 p.) :; 99 b/w illus.
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 10251nam a22019335i 4500
001 9780691220383
003 DE-B1597
005 20220629043637.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 220629t20212003nju fo d z eng d
010 |a 2020949714 
020 |a 9780691220383 
024 7 |a 10.1515/9780691220383  |2 doi 
035 |a (DE-B1597)576338 
035 |a (OCoLC)1245418636 
040 |a DE-B1597  |b eng  |c DE-B1597  |e rda 
041 0 |a eng 
044 |a nju  |c US-NJ 
050 4 |a QA306 
072 7 |a MAT015000  |2 bisacsh 
082 0 4 |a 511.66  |a 511/.66 
100 1 |a Nahin, Paul J.,   |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a When Least Is Best :  |b How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible /  |c Paul J. Nahin. 
264 1 |a Princeton, NJ :   |b Princeton University Press,   |c [2021] 
264 4 |c ©2003 
300 |a 1 online resource (392 p.) :  |b 99 b/w illus. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 0 |a Princeton Science Library ;  |v 114 
505 0 0 |t Frontmatter --   |t Contents --   |t Preface to the 2021 Edition --   |t Preface to the 2007 Paperback Edition --   |t Preface --   |t 1. Minimums, Maximums, Derivatives, and Computers --   |t 1.1 Introduction --   |t 1.2 When Derivatives Don’t Work --   |t 1.3 Using Algebra to Find Minimums --   |t 1.4 A Civil Engineering Problem --   |t 1.5 The AM-GM Inequality --   |t 1.6 Derivatives from Physics --   |t 1.7 Minimizing with a Computer --   |t 2. The First Extremal Problems --   |t 2.1 The Ancient Confusion of Length and Area --   |t 2.2 Dido’s Problem and the Isoperimetric Quotient --   |t 2.3 Steiner’s “Solution” to Dido’s Problem --   |t 2.4 How Steiner Stumbled --   |t 2.5 A “Hard” Problem with an Easy Solution --   |t 2.6 Fagnano’s Problem --   |t 3. Medieval Maximization and Some Modern Twists --   |t 3.1 The Regiomontanus Problem --   |t 3.2 The Saturn Problem --   |t 3.3 The Envelope-Folding Problem --   |t 3.4 The Pipe-and-Corner Problem --   |t 3.5 Regiomontanus Redux --   |t 3.6 The Muddy Wheel Problem --   |t 4. The Forgotten War of Descartes and Fermat --   |t 4.1 Two Very Different Men --   |t 4.2 Snell’s Law --   |t 4.3 Fermat, Tangent Lines, and Extrema --   |t 4.4 The Birth of the Derivative --   |t 4.5 Derivatives and Tangents --   |t 4.6 Snell’s Law and the Principle of Least Time --   |t 4.7 A Popular Textbook Problem --   |t 4.8 Snell’s Law and the Rainbow --   |t 5. Calculus Steps Forward, Center Stage --   |t 5.1 The Derivative: Controversy and Triumph --   |t 5.2 Paintings Again, and Kepler’s Wine Barrel --   |t 5.3 The Mailable Package Paradox --   |t 5.4 Projectile Motion in a Gravitational Field --   |t 5.5 The Perfect Basketball Shot --   |t 5.6 Halley’s Gunnery Problem --   |t 5.7 De L’Hospital and His Pulley Problem, and a New Minimum Principle --   |t 5.8 Derivatives and the Rainbow --   |t 6. Beyond Calculus --   |t 6.1 Galileo’s Problem --   |t 6.2 The Brachistochrone Problem --   |t 6.3 Comparing Galileo and Bernoulli --   |t 6.4 The Euler-Lagrange Equation --   |t 6.5 The Straight Line and the Brachistochrone --   |t 6.6 Galileo’s Hanging Chain --   |t 6.7 The Catenary Again --   |t 6.8 The Isoperimetric Problem, Solved (at last!) --   |t 6.9 Minimal Area Surfaces, Plateau’s Problem, and Soap Bubbles --   |t 6.10 The Human Side of Minimal Area Surfaces --   |t 7. The Modern Age Begins --   |t 7.1 The Fermat/Steiner Problem --   |t 7.2 Digging the Optimal Trench, Paving the Shortest Mail Route, and Least-Cost Paths through Directed Graphs --   |t 7.3 The Traveling Salesman Problem --   |t 7.4 Minimizing with Inequalities (Linear Programming) --   |t 7.5 Minimizing by Working Backwards (Dynamic Programming) --   |t Appendix A. The AM-GM Inequality --   |t Appendix B. The AM-QM Inequality, and Jensen’s Inequality --   |t Appendix C. “The Sagacity of the Bees” (the preface to Book 5 of Pappus’ Mathematical Collection) --   |t Appendix D. Every Convex Figure Has a Perimeter Bisector --   |t Appendix E. The Gravitational Free-Fall Descent Time along a Circle --   |t Appendix F. The Area Enclosed by a Closed Curve --   |t Appendix G. Beltrami’s Identity --   |t Appendix H. The Last Word on the Lost Fisherman Problem --   |t Appendix I. Solution to the New Challenge Problem --   |t Acknowledgments --   |t Index 
506 0 |a restricted access  |u http://purl.org/coar/access_right/c_16ec  |f online access with authorization  |2 star 
520 |a A mathematical journey through the most fascinating problems of extremes and how to solve themWhat is the best way to photograph a speeding bullet? How can lost hikers find their way out of a forest? Why does light move through glass in the least amount of time possible? When Least Is Best combines the mathematical history of extrema with contemporary examples to answer these intriguing questions and more. Paul Nahin shows how life often works at the extremes—with values becoming as small (or as large) as possible—and he considers how mathematicians over the centuries, including Descartes, Fermat, and Kepler, have grappled with these problems of minima and maxima. Throughout, Nahin examines entertaining conundrums, such as how to build the shortest bridge possible between two towns, how to vary speed during a race, and how to make the perfect basketball shot. Moving from medieval writings and modern calculus to the field of optimization, the engaging and witty explorations of When Least Is Best will delight math enthusiasts everywhere. 
538 |a Mode of access: Internet via World Wide Web. 
546 |a In English. 
588 0 |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 29. Jun 2022) 
650 0 |a Mathematics  |x History. 
650 0 |a Maxima and minima. 
650 7 |a MATHEMATICS / History & Philosophy.  |2 bisacsh 
653 |a AP Calculus. 
653 |a Addition. 
653 |a Almost surely. 
653 |a American Mathematical Monthly. 
653 |a Arc (geometry). 
653 |a Calculation. 
653 |a Cambridge University Press. 
653 |a Cartesian coordinate system. 
653 |a Catenary. 
653 |a Central angle. 
653 |a Chain rule. 
653 |a Change of variables. 
653 |a Circumference. 
653 |a Clockwise. 
653 |a Convex function. 
653 |a Coordinate system. 
653 |a Curve. 
653 |a Cycloid. 
653 |a Cylinder (geometry). 
653 |a Derivative. 
653 |a Diameter. 
653 |a Differential calculus. 
653 |a Differential equation. 
653 |a Dimension. 
653 |a Dynamic programming. 
653 |a Elementary function. 
653 |a Equation. 
653 |a Equilateral triangle. 
653 |a Euler–Lagrange equation. 
653 |a Fermat's principle. 
653 |a Fluxion. 
653 |a Geometry. 
653 |a Honeycomb conjecture. 
653 |a Hyperbolic function. 
653 |a Hypotenuse. 
653 |a Illustration. 
653 |a Inequality of arithmetic and geometric means. 
653 |a Instant. 
653 |a Integer. 
653 |a Isoperimetric problem. 
653 |a Iteration. 
653 |a Jensen's inequality. 
653 |a Johann Bernoulli. 
653 |a Kinetic energy. 
653 |a Length. 
653 |a Line (geometry). 
653 |a Line segment. 
653 |a Linear programming. 
653 |a Logarithm. 
653 |a Mathematical maturity. 
653 |a Mathematical problem. 
653 |a Mathematician. 
653 |a Mathematics. 
653 |a Maxima and minima. 
653 |a Newton's method. 
653 |a Notation. 
653 |a Parabola. 
653 |a Parametric equation. 
653 |a Partial derivative. 
653 |a Perimeter. 
653 |a Philosopher. 
653 |a Physicist. 
653 |a Pierre de Fermat. 
653 |a Polygon. 
653 |a Polynomial. 
653 |a Potential energy. 
653 |a Princeton University Press. 
653 |a Projectile. 
653 |a Pumping station. 
653 |a Pythagorean theorem. 
653 |a Quadratic equation. 
653 |a Quadratic formula. 
653 |a Quantity. 
653 |a Ray (optics). 
653 |a Real number. 
653 |a Rectangle. 
653 |a Refraction. 
653 |a Refractive index. 
653 |a Regiomontanus. 
653 |a Requirement. 
653 |a Result. 
653 |a Right angle. 
653 |a Right triangle. 
653 |a Science. 
653 |a Scientific notation. 
653 |a Second derivative. 
653 |a Semicircle. 
653 |a Sign (mathematics). 
653 |a Simple algebra. 
653 |a Simplex algorithm. 
653 |a Snell's law. 
653 |a Special case. 
653 |a Square root. 
653 |a Summation. 
653 |a Surface area. 
653 |a Tangent. 
653 |a Trigonometric functions. 
653 |a Variable (mathematics). 
653 |a Vertex angle. 
653 |a Writing. 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t EBOOK PACKAGE COMPLETE 2021 English  |z 9783110754001 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t EBOOK PACKAGE COMPLETE 2021  |z 9783110753776  |o ZDB-23-DGG 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t Princeton University Press eBook-Package Backlist 2000-2013  |z 9783110442502 
856 4 0 |u https://doi.org/10.1515/9780691220383?locatt=mode:legacy 
856 4 0 |u https://www.degruyter.com/isbn/9780691220383 
856 4 2 |3 Cover  |u https://www.degruyter.com/document/cover/isbn/9780691220383/original 
912 |a 978-3-11-044250-2 Princeton University Press eBook-Package Backlist 2000-2013  |c 2000  |d 2013 
912 |a 978-3-11-075400-1 EBOOK PACKAGE COMPLETE 2021 English  |b 2021 
912 |a EBA_BACKALL 
912 |a EBA_CL_MTPY 
912 |a EBA_EBACKALL 
912 |a EBA_EBKALL 
912 |a EBA_ECL_MTPY 
912 |a EBA_EEBKALL 
912 |a EBA_ESTMALL 
912 |a EBA_PPALL 
912 |a EBA_STMALL 
912 |a GBV-deGruyter-alles 
912 |a PDA12STME 
912 |a PDA13ENGE 
912 |a PDA18STMEE 
912 |a PDA5EBK 
912 |a ZDB-23-DGG  |b 2021