Delay-Adaptive Linear Control / / Yang Zhu, Miroslav Krstic.

Actuator and sensor delays are among the most common dynamic phenomena in engineering practice, and when disregarded, they render controlled systems unstable. Over the past sixty years, predictor feedback has been a key tool for compensating such delays, but conventional predictor feedback algorithm...

Full description

Saved in:
Bibliographic Details
Superior document:Title is part of eBook package: De Gruyter EBOOK PACKAGE COMPLETE 2020 English
VerfasserIn:
Place / Publishing House:Princeton, NJ : : Princeton University Press, , [2020]
©2020
Year of Publication:2020
Language:English
Series:Princeton Series in Applied Mathematics ; 66
Online Access:
Physical Description:1 online resource (352 p.) :; 48 b/w illus. 16 tables.
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 07881nam a22013095i 4500
001 9780691203317
003 DE-B1597
005 20230127011820.0
006 m|||||o||d||||||||
007 cr || ||||||||
008 230127t20202020nju fo d z eng d
010 |a 2019029729 
020 |a 9780691203317 
024 7 |a 10.1515/9780691203317  |2 doi 
035 |a (DE-B1597)541580 
035 |a (OCoLC)1134458137 
040 |a DE-B1597  |b eng  |c DE-B1597  |e rda 
041 0 |a eng 
044 |a nju  |c US-NJ 
050 0 0 |a TJ217 
050 4 |a TJ217  |b .Z57 2021 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 629.832  |2 23 
100 1 |a Zhu, Yang,   |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Delay-Adaptive Linear Control /  |c Yang Zhu, Miroslav Krstic. 
264 1 |a Princeton, NJ :   |b Princeton University Press,   |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource (352 p.) :  |b 48 b/w illus. 16 tables. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 0 |a Princeton Series in Applied Mathematics ;  |v 66 
505 0 0 |t Frontmatter --   |t Contents --   |t List of Figures and Tables --   |t Preface --   |t Acknowledgments --   |t List of Abbreviations --   |t Chapter One. Introduction --   |t Part I. Single-Input Discrete Delay --   |t Chapter Two. Basic Predictor Feedback for Single-Input Systems --   |t Chapter Three. Basic Idea of Adaptive Control for Single-Input Systems --   |t Chapter Four. Single-Input Systems with Full Relative Degree --   |t Chapter Five. Single-Input Systems with Arbitrary Relative Degree --   |t Part II. Multi-Input Discrete Delays --   |t Chapter Six. Exact Predictor Feedback for Multi-Input Systems --   |t Chapter Seven. Full-State Feedback of Uncertain Multi-Input Systems --   |t Chapter Eight. Output Feedback of Uncertain Multi-Input Systems --   |t Chapter Nine. Output Feedback of Systems with Uncertain Delays, Parameters, and ODE State --   |t Part III. Distributed Input Delays --   |t Chapter Ten. Predictor Feedback for Uncertainty-Free Systems --   |t Chapter Eleven. Predictor Feedback of Uncertain Single-Input Systems --   |t Chapter Twelve. Predictor Feedback of Uncertain Multi-Input Systems --   |t Appendix A --   |t Appendix B --   |t Appendix C --   |t Appendix D --   |t Bibliography --   |t Index 
506 0 |a restricted access  |u http://purl.org/coar/access_right/c_16ec  |f online access with authorization  |2 star 
520 |a Actuator and sensor delays are among the most common dynamic phenomena in engineering practice, and when disregarded, they render controlled systems unstable. Over the past sixty years, predictor feedback has been a key tool for compensating such delays, but conventional predictor feedback algorithms assume that the delays and other parameters of a given system are known. When incorrect parameter values are used in the predictor, the resulting controller may be as destabilizing as without the delay compensation.Delay-Adaptive Linear Control develops adaptive predictor feedback algorithms equipped with online estimators of unknown delays and other parameters. Such estimators are designed as nonlinear differential equations, which dynamically adjust the parameters of the predictor. The design and analysis of the adaptive predictors involves a Lyapunov stability study of systems whose dimension is infinite, because of the delays, and nonlinear, because of the parameter estimators. This comprehensive book solves adaptive delay compensation problems for systems with single and multiple inputs/outputs, unknown and distinct delays in different input channels, unknown delay kernels, unknown plant parameters, unmeasurable finite-dimensional plant states, and unmeasurable infinite-dimensional actuator states.Presenting breakthroughs in adaptive control and control of delay systems, Delay-Adaptive Linear Control offers powerful new tools for the control engineer and the mathematician. 
538 |a Mode of access: Internet via World Wide Web. 
546 |a In English. 
588 0 |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 27. Jan 2023) 
650 0 |a Adaptive control systems  |x Mathematical models. 
650 0 |a Differential equations, Linear. 
650 0 |a Engineering mathematics. 
650 0 |a Linear control systems  |x Mathematical models. 
650 0 |a Linear time invariant systems  |x Mathematical models. 
650 0 |a Time delay systems  |x Mathematical models. 
650 7 |a MATHEMATICS / Applied.  |2 bisacsh 
653 |a 3D printing. 
653 |a Multi-input systems. 
653 |a ODE delay notation. 
653 |a adaptive control of uncertain systems. 
653 |a aerospace engineering. 
653 |a backstepping transformation. 
653 |a biomedical engineering. 
653 |a chemical engineers. 
653 |a civil engineering. 
653 |a combustion systems. 
653 |a computer engineers. 
653 |a control designs. 
653 |a control synthesis techniques. 
653 |a control theorists. 
653 |a delay-related challenges. 
653 |a delayed telecommunication systems. 
653 |a delays in traffic flow dynamics. 
653 |a distinct discrete input delays. 
653 |a distributed input delays. 
653 |a electrical engineers. 
653 |a feedback of linear systems. 
653 |a finite-dimensional systems. 
653 |a global stability of nonlinear infinite-dimensional systems. 
653 |a mechanical engineers, aerospace engineers. 
653 |a multivariable multidelay systems. 
653 |a neuromuscular electrical stimulation. 
653 |a nonlinear infinite-dimensional stability study. 
653 |a process dynamic researchers. 
653 |a robotic manipulators. 
653 |a structural engineering. 
653 |a supply chains. 
653 |a time-delay systems. 
653 |a uncertainty combinations. 
653 |a unmanned aerial vehicles. 
653 |a unmeasured states. 
700 1 |a Krstic, Miroslav,   |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t EBOOK PACKAGE COMPLETE 2020 English  |z 9783110704716 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t EBOOK PACKAGE COMPLETE 2020  |z 9783110704518  |o ZDB-23-DGG 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t EBOOK PACKAGE Mathematics 2020 English  |z 9783110704846 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t EBOOK PACKAGE Mathematics 2020  |z 9783110704662  |o ZDB-23-DMA 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t Princeton Series in Applied Mathematics eBook-Package  |z 9783110515831  |o ZDB-23-PAM 
773 0 8 |i Title is part of eBook package:  |d De Gruyter  |t Princeton University Press Complete eBook-Package 2020  |z 9783110690088 
776 0 |c print  |z 9780691202549 
856 4 0 |u https://doi.org/10.1515/9780691203317?locatt=mode:legacy 
856 4 0 |u https://www.degruyter.com/isbn/9780691203317 
856 4 2 |3 Cover  |u https://www.degruyter.com/document/cover/isbn/9780691203317/original 
912 |a 978-3-11-069008-8 Princeton University Press Complete eBook-Package 2020  |b 2020 
912 |a 978-3-11-070471-6 EBOOK PACKAGE COMPLETE 2020 English  |b 2020 
912 |a 978-3-11-070484-6 EBOOK PACKAGE Mathematics 2020 English  |b 2020 
912 |a EBA_BACKALL 
912 |a EBA_CL_MTPY 
912 |a EBA_EBACKALL 
912 |a EBA_EBKALL 
912 |a EBA_ECL_MTPY 
912 |a EBA_EEBKALL 
912 |a EBA_ESTMALL 
912 |a EBA_PPALL 
912 |a EBA_STMALL 
912 |a GBV-deGruyter-alles 
912 |a PDA12STME 
912 |a PDA13ENGE 
912 |a PDA18STMEE 
912 |a PDA5EBK 
912 |a ZDB-23-DGG  |b 2020 
912 |a ZDB-23-DMA  |b 2020 
912 |a ZDB-23-PAM