Structural geology algorithms : vectors and tensors / / Richard W. Allmendinger, Nestor Cardozo, Donald M. Fisher.

"Structural Geology has been taught, largely unchanged, for the last 50 years or more. The lecture part of most courses introduces students to concepts such as stress and strain, as well as more descriptive material like fault and fold terminology. The lab part of the course usually focuses on...

Full description

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Year of Publication:2012
Language:English
Online Access:
Physical Description:xi, 290 p. :; ill.
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03159nam a2200421 a 4500
001 500824466
003 MiAaPQ
005 20200520144314.0
006 m o d |
007 cr cn|||||||||
008 110725s2012 enka sb 001 0 eng d
010 |z  2011030685 
020 |z 9781107012004 (hardback) 
020 |z 9781107401389 (pbk.) 
020 |a 9781139207379 (electronic bk.) 
035 |a (MiAaPQ)500824466 
035 |a (Au-PeEL)EBL824466 
035 |a (CaPaEBR)ebr10535790 
035 |a (CaONFJC)MIL359811 
035 |a (OCoLC)775869652 
040 |a MiAaPQ  |c MiAaPQ  |d MiAaPQ 
050 4 |a QE601.3.M38  |b A45 2012 
082 0 4 |a 551.801/5181  |2 23 
100 1 |a Allmendinger, Richard Waldron. 
245 1 0 |a Structural geology algorithms  |h [electronic resource] :  |b vectors and tensors /  |c Richard W. Allmendinger, Nestor Cardozo, Donald M. Fisher. 
260 |a Cambridge [England] :  |b Cambridge University Press,  |c 2012. 
300 |a xi, 290 p. :  |b ill. 
504 |a Includes bibliographical references and index. 
505 8 |a Machine generated contents note: Preface; 1. Problem solving in structural geology; 2. Coordinate systems, scalars and vectors; 3. Transformations of coordinate axes and vectors; 4. Matrix operations and indicial notation; 5. Tensors; 6. Stress; 7. Introduction to deformation; 8. Infinitesimal strain; 9. Finite strain; 10. Progressive strain histories and kinematics; 11. Velocity description of deformation; 12. Error analysis; References; Index. 
520 |a "Structural Geology has been taught, largely unchanged, for the last 50 years or more. The lecture part of most courses introduces students to concepts such as stress and strain, as well as more descriptive material like fault and fold terminology. The lab part of the course usually focuses on practical problem solving, mostly traditional me-thods for describing quantitatively the geometry of structures. While the lecture may introduce advanced concepts such as tensors, the lab commonly trains the student to use a combination of graphical methods like orthographic or spherical projection, as well as a variety of plane trigonometry solutions to various problems. This leads to a disconnect between lecture concepts that require a very precise understanding of coor-dinate systems (e.g., tensors) and lab methods that appear to have no common spatial or mathematical foundation. Students have no chance to understand that, for example, seemingly unconnected constructions like down-plunge projections and Mohr circles share a common mathematical heritage: they are both graphical representations of coordinate transformations"--  |c Provided by publisher. 
533 |a Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries. 
650 0 |a Geology, Structural  |x Mathematics. 
650 0 |a Rock deformation  |x Mathematical models. 
655 4 |a Electronic books. 
700 1 |a Cardozo, Nestor. 
700 1 |a Fisher, Donald M. 
710 2 |a ProQuest (Firm) 
856 4 0 |u https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=824466  |z Click to View