Machine Learning and Its Application to Reacting Flows : : ML and Combustion.

Saved in:
Bibliographic Details
Superior document:Lecture Notes in Energy Series ; v.44
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2023.
Ã2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Series:Lecture Notes in Energy Series
Online Access:
Physical Description:1 online resource (353 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5007167859
ctrlnum (MiAaPQ)5007167859
(Au-PeEL)EBL7167859
(OCoLC)1358406676
collection bib_alma
record_format marc
spelling Swaminathan, Nedunchezhian.
Machine Learning and Its Application to Reacting Flows : ML and Combustion.
1st ed.
Cham : Springer International Publishing AG, 2023.
Ã2023.
1 online resource (353 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Lecture Notes in Energy Series ; v.44
Intro -- Preface -- Contents -- Contributors -- Introduction -- 1 Combustion Technology Role -- 2 Governing Equations -- 3 Equations for LES -- 3.1 SGS Closures -- 3.2 LES Challenges and Role of MLA -- 4 Objectives -- References -- Machine Learning Techniques in Reactive Atomistic Simulations -- 1 Introduction and Overview -- 1.1 Molecular Dynamics, Reactive Force Fields and the Concept of Bond Order -- 1.2 Accuracy, Complexity, and Transferability -- 2 Machine Learning and Optimization Techniques -- 2.1 Continuous Optimization for Convex and Non-convex Optimization -- 2.2 Discrete Optimization -- 3 Machine Learning Models -- 3.1 Unsupervised Learning -- 3.2 Supervised Learning -- 3.3 Software Infrastructure for Machine Learning Applications -- 4 ML Applications in Reactive Atomistic Simulations -- 4.1 ML Techniques for Training Reactive Atomistic Models -- 4.2 Accelerating Reactive Simulations -- 5 Analyzing Results from Atomistic Simulations -- 5.1 Representation Techniques -- 5.2 Dimensionality Reduction and Clustering -- 5.3 Dynamical Models and Analysis -- 5.4 Reaction Rates and Chemical Properties -- 6 Concluding Remarks -- References -- A Novel In Situ Machine Learning Framework for Intelligent Data Capture and Event Detection -- 1 Introduction -- 1.1 Overview of Related Work -- 1.2 Contributions and Organization -- 2 Approach -- 3 Results -- 3.1 Data Capture for Optimal I/O: Mantaflow Experiments -- 3.2 Detecting Physical Phenomena: Marine Ice Sheet Instability (MISI) -- 3.3 Reduced Order Modeling: Sample Mesh Generation for Hyper-Reduction -- 3.4 HPC Experiments -- 4 Conclusion -- References -- Machine-Learning for Stress Tensor Modelling in Large Eddy Simulation -- 1 Introduction -- 2 Classic Stress Tensor Models -- 2.1 Smagorinsky -- 2.2 Scale Similarity -- 2.3 Gradient Model -- 2.4 Clark Model.
2.5 Wall-Adapting Local Eddy-Viscosity (WALE) -- 3 Deconvolution-Based Modelling -- 4 Machine-Learning Based Models -- 4.1 Type (a) -- 4.2 Type (b) -- 4.3 Type (c) -- 5 A Note: Sub-grid Versus Sub-filter -- 6 Challenges of Data-Based Models -- 6.1 Universality -- 6.2 Choice and Pre-processing of Data -- 6.3 Training, Validation, Testing -- 6.4 Network Structure -- 6.5 LES Mesh Size -- 6.6 Performance Metrics -- 7 Summary -- References -- Machine Learning for Combustion Chemistry -- 1 Introduction and Motivation -- 2 Learning Reaction Rates -- 2.1 Chemistry Regression via ANNs -- 3 Learning Reaction Mechanisms -- 3.1 Learning Observables in Complex Reaction Mechanisms -- 3.2 Chemical Reaction Neural Networks -- 3.3 PCA-Based Chemistry Reduction and Other PCA Applications -- 3.4 Hybrid Chemistry Models and Implementation of ML Tools -- 3.5 Extending Functional Groups for Kinetics Modeling -- 3.6 Fuel Properties' Prediction Using ML -- 3.7 Transfer Learning for Reaction Chemistry -- 4 Chemistry Integration and Acceleration -- 5 Conclusions -- References -- Deep Convolutional Neural Networks for Subgrid-Scale Flame Wrinkling Modeling -- 1 Introduction -- 2 Wrinkling Models -- 3 Convolutional Neural Networks -- 3.1 Artificial Neural Networks -- 3.2 Convolutional Layers -- 3.3 From Segmentation to Predicting Physical Fields with CNNs -- 4 Training CNNs to Model Flame Wrinkling -- 4.1 Data Preparation -- 4.2 Building and Analyzing the U-Net -- 4.3 A Priori Validation -- 5 Discussion -- 6 Conclusion -- References -- Machine Learning Strategy for Subgrid Modeling of Turbulent Combustion Using Linear Eddy Mixing Based Tabulation -- 1 Introduction -- 2 ML for Modeling of Turbulent Combustion -- 2.1 ANN Model for Chemistry -- 2.2 LES of Turbulent Combustion Using ANN -- 3 Mathematical Formulation with ANN -- 3.1 Governing Equations and Subgrid Models.
3.2 ANN Based Modeling -- 4 Example Applications -- 4.1 Premixed Flame Turbulence -- 4.2 Non-premixed Temporally Evolving Jet Flame -- 4.3 SPRF Combustor -- 4.4 Cavity Strut Flame-Holder for Supersonic Combustion -- 5 Limitations of Past Studies -- 6 Summary and Outlook -- References -- On the Use of Machine Learning for Subgrid Scale Filtered Density Function Modelling in Large Eddy Simulations of Combustion Systems -- 1 Introduction -- 2 FDF Modelling -- 3 DNS Data Extraction and Manipulation -- 3.1 Low-Swirl Premixed Flame -- 3.2 MILD Combustion -- 3.3 Spray Combustion -- 4 Deep Neural Networks for Subgrid-Scale FDFs -- 4.1 Low-Swirl Premixed Flame -- 4.2 MILD Combustion -- 4.3 Spray Flame -- 5 Main Results -- 5.1 FDF Predictions and Generalisation -- 5.2 Reaction Rate Predictions -- 6 Conclusions and Prospects -- References -- Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches -- 1 Introduction -- 2 Governing Equations for Multicomponent Mixtures -- 3 Obtaining Data Matrices for Data-Driven Approaches -- 4 Reduced-Order Modeling -- 4.1 Data Preprocessing -- 4.2 Reducing the Number of Governing Equations -- 4.3 Low-Dimensional Manifold Topology -- 4.4 Nonlinear Regression -- 5 Applications of the Principal Component Transport in Combustion Simulations -- 5.1 A Priori Validations in a Zero-Dimensional Reactor -- 5.2 A Posteriori Validations on Sandia Flame D and F -- 6 Conclusions -- References -- AI Super-Resolution: Application to Turbulence and Combustion -- 1 Introduction -- 2 PIESRGAN -- 2.1 Architecture -- 2.2 Algorithm -- 2.3 Implementation Details -- 3 Application to Turbulence -- 3.1 Case Description -- 3.2 A Priori Results -- 3.3 A Posteriori Results -- 3.4 Discussion -- 4 Application to Reactive Sprays -- 4.1 Case Description -- 4.2 Results -- 4.3 Discussion -- 5 Application to Premixed Combustion.
5.1 Case Description -- 5.2 A Priori Results -- 5.3 A Posteriori Results -- 5.4 Discussion -- 6 Application to Non-premixed Combustion -- 6.1 Case Description -- 6.2 A Priori Results -- 6.3 A Posteriori Results -- 6.4 Discussion -- 7 Conclusions -- References -- Machine Learning for Thermoacoustics -- 1 Introduction -- 1.1 The Physical Mechanism Driving Thermoacoustic Instability -- 1.2 The Extreme Sensitivity of Thermoacoustic Systems -- 1.3 The Opportunity for Data-Driven Methods in Thermoacoustics -- 2 Physics-Based Bayesian Inference Applied to a Complete System -- 2.1 Laplace's Method -- 2.2 Accelerating Laplace's Method with Adjoint Methods -- 2.3 Applying Laplace's Method to a Complete Thermoacoustic System -- 3 Physics-Based Statistical Inference Applied to a Flame -- 3.1 Assimilating Experimental Data with an Ensemble Kalman Filter -- 3.2 Assimilating with a Bayesian Neural Network Ensemble -- 4 Identifying Precursors to Thermoacoustic Instability with BayNNEs -- 4.1 Laboratory Combustor -- 4.2 Intermediate Pressure Industrial Fuel Spray Nozzle -- 4.3 Full Scale Aeroplane Engine -- 5 Conclusion -- References -- Summary -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Parente, Alessandro.
Print version: Swaminathan, Nedunchezhian Machine Learning and Its Application to Reacting Flows Cham : Springer International Publishing AG,c2023 9783031162473
ProQuest (Firm)
Lecture Notes in Energy Series
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7167859 Click to View
language English
format eBook
author Swaminathan, Nedunchezhian.
spellingShingle Swaminathan, Nedunchezhian.
Machine Learning and Its Application to Reacting Flows : ML and Combustion.
Lecture Notes in Energy Series ;
Intro -- Preface -- Contents -- Contributors -- Introduction -- 1 Combustion Technology Role -- 2 Governing Equations -- 3 Equations for LES -- 3.1 SGS Closures -- 3.2 LES Challenges and Role of MLA -- 4 Objectives -- References -- Machine Learning Techniques in Reactive Atomistic Simulations -- 1 Introduction and Overview -- 1.1 Molecular Dynamics, Reactive Force Fields and the Concept of Bond Order -- 1.2 Accuracy, Complexity, and Transferability -- 2 Machine Learning and Optimization Techniques -- 2.1 Continuous Optimization for Convex and Non-convex Optimization -- 2.2 Discrete Optimization -- 3 Machine Learning Models -- 3.1 Unsupervised Learning -- 3.2 Supervised Learning -- 3.3 Software Infrastructure for Machine Learning Applications -- 4 ML Applications in Reactive Atomistic Simulations -- 4.1 ML Techniques for Training Reactive Atomistic Models -- 4.2 Accelerating Reactive Simulations -- 5 Analyzing Results from Atomistic Simulations -- 5.1 Representation Techniques -- 5.2 Dimensionality Reduction and Clustering -- 5.3 Dynamical Models and Analysis -- 5.4 Reaction Rates and Chemical Properties -- 6 Concluding Remarks -- References -- A Novel In Situ Machine Learning Framework for Intelligent Data Capture and Event Detection -- 1 Introduction -- 1.1 Overview of Related Work -- 1.2 Contributions and Organization -- 2 Approach -- 3 Results -- 3.1 Data Capture for Optimal I/O: Mantaflow Experiments -- 3.2 Detecting Physical Phenomena: Marine Ice Sheet Instability (MISI) -- 3.3 Reduced Order Modeling: Sample Mesh Generation for Hyper-Reduction -- 3.4 HPC Experiments -- 4 Conclusion -- References -- Machine-Learning for Stress Tensor Modelling in Large Eddy Simulation -- 1 Introduction -- 2 Classic Stress Tensor Models -- 2.1 Smagorinsky -- 2.2 Scale Similarity -- 2.3 Gradient Model -- 2.4 Clark Model.
2.5 Wall-Adapting Local Eddy-Viscosity (WALE) -- 3 Deconvolution-Based Modelling -- 4 Machine-Learning Based Models -- 4.1 Type (a) -- 4.2 Type (b) -- 4.3 Type (c) -- 5 A Note: Sub-grid Versus Sub-filter -- 6 Challenges of Data-Based Models -- 6.1 Universality -- 6.2 Choice and Pre-processing of Data -- 6.3 Training, Validation, Testing -- 6.4 Network Structure -- 6.5 LES Mesh Size -- 6.6 Performance Metrics -- 7 Summary -- References -- Machine Learning for Combustion Chemistry -- 1 Introduction and Motivation -- 2 Learning Reaction Rates -- 2.1 Chemistry Regression via ANNs -- 3 Learning Reaction Mechanisms -- 3.1 Learning Observables in Complex Reaction Mechanisms -- 3.2 Chemical Reaction Neural Networks -- 3.3 PCA-Based Chemistry Reduction and Other PCA Applications -- 3.4 Hybrid Chemistry Models and Implementation of ML Tools -- 3.5 Extending Functional Groups for Kinetics Modeling -- 3.6 Fuel Properties' Prediction Using ML -- 3.7 Transfer Learning for Reaction Chemistry -- 4 Chemistry Integration and Acceleration -- 5 Conclusions -- References -- Deep Convolutional Neural Networks for Subgrid-Scale Flame Wrinkling Modeling -- 1 Introduction -- 2 Wrinkling Models -- 3 Convolutional Neural Networks -- 3.1 Artificial Neural Networks -- 3.2 Convolutional Layers -- 3.3 From Segmentation to Predicting Physical Fields with CNNs -- 4 Training CNNs to Model Flame Wrinkling -- 4.1 Data Preparation -- 4.2 Building and Analyzing the U-Net -- 4.3 A Priori Validation -- 5 Discussion -- 6 Conclusion -- References -- Machine Learning Strategy for Subgrid Modeling of Turbulent Combustion Using Linear Eddy Mixing Based Tabulation -- 1 Introduction -- 2 ML for Modeling of Turbulent Combustion -- 2.1 ANN Model for Chemistry -- 2.2 LES of Turbulent Combustion Using ANN -- 3 Mathematical Formulation with ANN -- 3.1 Governing Equations and Subgrid Models.
3.2 ANN Based Modeling -- 4 Example Applications -- 4.1 Premixed Flame Turbulence -- 4.2 Non-premixed Temporally Evolving Jet Flame -- 4.3 SPRF Combustor -- 4.4 Cavity Strut Flame-Holder for Supersonic Combustion -- 5 Limitations of Past Studies -- 6 Summary and Outlook -- References -- On the Use of Machine Learning for Subgrid Scale Filtered Density Function Modelling in Large Eddy Simulations of Combustion Systems -- 1 Introduction -- 2 FDF Modelling -- 3 DNS Data Extraction and Manipulation -- 3.1 Low-Swirl Premixed Flame -- 3.2 MILD Combustion -- 3.3 Spray Combustion -- 4 Deep Neural Networks for Subgrid-Scale FDFs -- 4.1 Low-Swirl Premixed Flame -- 4.2 MILD Combustion -- 4.3 Spray Flame -- 5 Main Results -- 5.1 FDF Predictions and Generalisation -- 5.2 Reaction Rate Predictions -- 6 Conclusions and Prospects -- References -- Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches -- 1 Introduction -- 2 Governing Equations for Multicomponent Mixtures -- 3 Obtaining Data Matrices for Data-Driven Approaches -- 4 Reduced-Order Modeling -- 4.1 Data Preprocessing -- 4.2 Reducing the Number of Governing Equations -- 4.3 Low-Dimensional Manifold Topology -- 4.4 Nonlinear Regression -- 5 Applications of the Principal Component Transport in Combustion Simulations -- 5.1 A Priori Validations in a Zero-Dimensional Reactor -- 5.2 A Posteriori Validations on Sandia Flame D and F -- 6 Conclusions -- References -- AI Super-Resolution: Application to Turbulence and Combustion -- 1 Introduction -- 2 PIESRGAN -- 2.1 Architecture -- 2.2 Algorithm -- 2.3 Implementation Details -- 3 Application to Turbulence -- 3.1 Case Description -- 3.2 A Priori Results -- 3.3 A Posteriori Results -- 3.4 Discussion -- 4 Application to Reactive Sprays -- 4.1 Case Description -- 4.2 Results -- 4.3 Discussion -- 5 Application to Premixed Combustion.
5.1 Case Description -- 5.2 A Priori Results -- 5.3 A Posteriori Results -- 5.4 Discussion -- 6 Application to Non-premixed Combustion -- 6.1 Case Description -- 6.2 A Priori Results -- 6.3 A Posteriori Results -- 6.4 Discussion -- 7 Conclusions -- References -- Machine Learning for Thermoacoustics -- 1 Introduction -- 1.1 The Physical Mechanism Driving Thermoacoustic Instability -- 1.2 The Extreme Sensitivity of Thermoacoustic Systems -- 1.3 The Opportunity for Data-Driven Methods in Thermoacoustics -- 2 Physics-Based Bayesian Inference Applied to a Complete System -- 2.1 Laplace's Method -- 2.2 Accelerating Laplace's Method with Adjoint Methods -- 2.3 Applying Laplace's Method to a Complete Thermoacoustic System -- 3 Physics-Based Statistical Inference Applied to a Flame -- 3.1 Assimilating Experimental Data with an Ensemble Kalman Filter -- 3.2 Assimilating with a Bayesian Neural Network Ensemble -- 4 Identifying Precursors to Thermoacoustic Instability with BayNNEs -- 4.1 Laboratory Combustor -- 4.2 Intermediate Pressure Industrial Fuel Spray Nozzle -- 4.3 Full Scale Aeroplane Engine -- 5 Conclusion -- References -- Summary -- Index.
author_facet Swaminathan, Nedunchezhian.
Parente, Alessandro.
author_variant n s ns
author2 Parente, Alessandro.
author2_variant a p ap
author2_role TeilnehmendeR
author_sort Swaminathan, Nedunchezhian.
title Machine Learning and Its Application to Reacting Flows : ML and Combustion.
title_sub ML and Combustion.
title_full Machine Learning and Its Application to Reacting Flows : ML and Combustion.
title_fullStr Machine Learning and Its Application to Reacting Flows : ML and Combustion.
title_full_unstemmed Machine Learning and Its Application to Reacting Flows : ML and Combustion.
title_auth Machine Learning and Its Application to Reacting Flows : ML and Combustion.
title_new Machine Learning and Its Application to Reacting Flows :
title_sort machine learning and its application to reacting flows : ml and combustion.
series Lecture Notes in Energy Series ;
series2 Lecture Notes in Energy Series ;
publisher Springer International Publishing AG,
publishDate 2023
physical 1 online resource (353 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- Contributors -- Introduction -- 1 Combustion Technology Role -- 2 Governing Equations -- 3 Equations for LES -- 3.1 SGS Closures -- 3.2 LES Challenges and Role of MLA -- 4 Objectives -- References -- Machine Learning Techniques in Reactive Atomistic Simulations -- 1 Introduction and Overview -- 1.1 Molecular Dynamics, Reactive Force Fields and the Concept of Bond Order -- 1.2 Accuracy, Complexity, and Transferability -- 2 Machine Learning and Optimization Techniques -- 2.1 Continuous Optimization for Convex and Non-convex Optimization -- 2.2 Discrete Optimization -- 3 Machine Learning Models -- 3.1 Unsupervised Learning -- 3.2 Supervised Learning -- 3.3 Software Infrastructure for Machine Learning Applications -- 4 ML Applications in Reactive Atomistic Simulations -- 4.1 ML Techniques for Training Reactive Atomistic Models -- 4.2 Accelerating Reactive Simulations -- 5 Analyzing Results from Atomistic Simulations -- 5.1 Representation Techniques -- 5.2 Dimensionality Reduction and Clustering -- 5.3 Dynamical Models and Analysis -- 5.4 Reaction Rates and Chemical Properties -- 6 Concluding Remarks -- References -- A Novel In Situ Machine Learning Framework for Intelligent Data Capture and Event Detection -- 1 Introduction -- 1.1 Overview of Related Work -- 1.2 Contributions and Organization -- 2 Approach -- 3 Results -- 3.1 Data Capture for Optimal I/O: Mantaflow Experiments -- 3.2 Detecting Physical Phenomena: Marine Ice Sheet Instability (MISI) -- 3.3 Reduced Order Modeling: Sample Mesh Generation for Hyper-Reduction -- 3.4 HPC Experiments -- 4 Conclusion -- References -- Machine-Learning for Stress Tensor Modelling in Large Eddy Simulation -- 1 Introduction -- 2 Classic Stress Tensor Models -- 2.1 Smagorinsky -- 2.2 Scale Similarity -- 2.3 Gradient Model -- 2.4 Clark Model.
2.5 Wall-Adapting Local Eddy-Viscosity (WALE) -- 3 Deconvolution-Based Modelling -- 4 Machine-Learning Based Models -- 4.1 Type (a) -- 4.2 Type (b) -- 4.3 Type (c) -- 5 A Note: Sub-grid Versus Sub-filter -- 6 Challenges of Data-Based Models -- 6.1 Universality -- 6.2 Choice and Pre-processing of Data -- 6.3 Training, Validation, Testing -- 6.4 Network Structure -- 6.5 LES Mesh Size -- 6.6 Performance Metrics -- 7 Summary -- References -- Machine Learning for Combustion Chemistry -- 1 Introduction and Motivation -- 2 Learning Reaction Rates -- 2.1 Chemistry Regression via ANNs -- 3 Learning Reaction Mechanisms -- 3.1 Learning Observables in Complex Reaction Mechanisms -- 3.2 Chemical Reaction Neural Networks -- 3.3 PCA-Based Chemistry Reduction and Other PCA Applications -- 3.4 Hybrid Chemistry Models and Implementation of ML Tools -- 3.5 Extending Functional Groups for Kinetics Modeling -- 3.6 Fuel Properties' Prediction Using ML -- 3.7 Transfer Learning for Reaction Chemistry -- 4 Chemistry Integration and Acceleration -- 5 Conclusions -- References -- Deep Convolutional Neural Networks for Subgrid-Scale Flame Wrinkling Modeling -- 1 Introduction -- 2 Wrinkling Models -- 3 Convolutional Neural Networks -- 3.1 Artificial Neural Networks -- 3.2 Convolutional Layers -- 3.3 From Segmentation to Predicting Physical Fields with CNNs -- 4 Training CNNs to Model Flame Wrinkling -- 4.1 Data Preparation -- 4.2 Building and Analyzing the U-Net -- 4.3 A Priori Validation -- 5 Discussion -- 6 Conclusion -- References -- Machine Learning Strategy for Subgrid Modeling of Turbulent Combustion Using Linear Eddy Mixing Based Tabulation -- 1 Introduction -- 2 ML for Modeling of Turbulent Combustion -- 2.1 ANN Model for Chemistry -- 2.2 LES of Turbulent Combustion Using ANN -- 3 Mathematical Formulation with ANN -- 3.1 Governing Equations and Subgrid Models.
3.2 ANN Based Modeling -- 4 Example Applications -- 4.1 Premixed Flame Turbulence -- 4.2 Non-premixed Temporally Evolving Jet Flame -- 4.3 SPRF Combustor -- 4.4 Cavity Strut Flame-Holder for Supersonic Combustion -- 5 Limitations of Past Studies -- 6 Summary and Outlook -- References -- On the Use of Machine Learning for Subgrid Scale Filtered Density Function Modelling in Large Eddy Simulations of Combustion Systems -- 1 Introduction -- 2 FDF Modelling -- 3 DNS Data Extraction and Manipulation -- 3.1 Low-Swirl Premixed Flame -- 3.2 MILD Combustion -- 3.3 Spray Combustion -- 4 Deep Neural Networks for Subgrid-Scale FDFs -- 4.1 Low-Swirl Premixed Flame -- 4.2 MILD Combustion -- 4.3 Spray Flame -- 5 Main Results -- 5.1 FDF Predictions and Generalisation -- 5.2 Reaction Rate Predictions -- 6 Conclusions and Prospects -- References -- Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches -- 1 Introduction -- 2 Governing Equations for Multicomponent Mixtures -- 3 Obtaining Data Matrices for Data-Driven Approaches -- 4 Reduced-Order Modeling -- 4.1 Data Preprocessing -- 4.2 Reducing the Number of Governing Equations -- 4.3 Low-Dimensional Manifold Topology -- 4.4 Nonlinear Regression -- 5 Applications of the Principal Component Transport in Combustion Simulations -- 5.1 A Priori Validations in a Zero-Dimensional Reactor -- 5.2 A Posteriori Validations on Sandia Flame D and F -- 6 Conclusions -- References -- AI Super-Resolution: Application to Turbulence and Combustion -- 1 Introduction -- 2 PIESRGAN -- 2.1 Architecture -- 2.2 Algorithm -- 2.3 Implementation Details -- 3 Application to Turbulence -- 3.1 Case Description -- 3.2 A Priori Results -- 3.3 A Posteriori Results -- 3.4 Discussion -- 4 Application to Reactive Sprays -- 4.1 Case Description -- 4.2 Results -- 4.3 Discussion -- 5 Application to Premixed Combustion.
5.1 Case Description -- 5.2 A Priori Results -- 5.3 A Posteriori Results -- 5.4 Discussion -- 6 Application to Non-premixed Combustion -- 6.1 Case Description -- 6.2 A Priori Results -- 6.3 A Posteriori Results -- 6.4 Discussion -- 7 Conclusions -- References -- Machine Learning for Thermoacoustics -- 1 Introduction -- 1.1 The Physical Mechanism Driving Thermoacoustic Instability -- 1.2 The Extreme Sensitivity of Thermoacoustic Systems -- 1.3 The Opportunity for Data-Driven Methods in Thermoacoustics -- 2 Physics-Based Bayesian Inference Applied to a Complete System -- 2.1 Laplace's Method -- 2.2 Accelerating Laplace's Method with Adjoint Methods -- 2.3 Applying Laplace's Method to a Complete Thermoacoustic System -- 3 Physics-Based Statistical Inference Applied to a Flame -- 3.1 Assimilating Experimental Data with an Ensemble Kalman Filter -- 3.2 Assimilating with a Bayesian Neural Network Ensemble -- 4 Identifying Precursors to Thermoacoustic Instability with BayNNEs -- 4.1 Laboratory Combustor -- 4.2 Intermediate Pressure Industrial Fuel Spray Nozzle -- 4.3 Full Scale Aeroplane Engine -- 5 Conclusion -- References -- Summary -- Index.
isbn 9783031162480
9783031162473
callnumber-first T - Technology
callnumber-subject TK - Electrical and Nuclear Engineering
callnumber-label TK1041-1078
callnumber-sort TK 41041 41078
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7167859
illustrated Not Illustrated
oclc_num 1358406676
work_keys_str_mv AT swaminathannedunchezhian machinelearninganditsapplicationtoreactingflowsmlandcombustion
AT parentealessandro machinelearninganditsapplicationtoreactingflowsmlandcombustion
status_str n
ids_txt_mv (MiAaPQ)5007167859
(Au-PeEL)EBL7167859
(OCoLC)1358406676
carrierType_str_mv cr
hierarchy_parent_title Lecture Notes in Energy Series ; v.44
is_hierarchy_title Machine Learning and Its Application to Reacting Flows : ML and Combustion.
container_title Lecture Notes in Energy Series ; v.44
author2_original_writing_str_mv noLinkedField
marc_error Info : Unimarc and ISO-8859-1 translations identical, choosing ISO-8859-1. --- [ 856 : z ]
_version_ 1792331065552011264
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08457nam a22004453i 4500</leader><controlfield tag="001">5007167859</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073848.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2023 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031162480</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783031162473</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5007167859</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL7167859</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1358406676</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK1041-1078</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Swaminathan, Nedunchezhian.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning and Its Application to Reacting Flows :</subfield><subfield code="b">ML and Combustion.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2023.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">Ã2023.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (353 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Energy Series ;</subfield><subfield code="v">v.44</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Contributors -- Introduction -- 1 Combustion Technology Role -- 2 Governing Equations -- 3 Equations for LES -- 3.1 SGS Closures -- 3.2 LES Challenges and Role of MLA -- 4 Objectives -- References -- Machine Learning Techniques in Reactive Atomistic Simulations -- 1 Introduction and Overview -- 1.1 Molecular Dynamics, Reactive Force Fields and the Concept of Bond Order -- 1.2 Accuracy, Complexity, and Transferability -- 2 Machine Learning and Optimization Techniques -- 2.1 Continuous Optimization for Convex and Non-convex Optimization -- 2.2 Discrete Optimization -- 3 Machine Learning Models -- 3.1 Unsupervised Learning -- 3.2 Supervised Learning -- 3.3 Software Infrastructure for Machine Learning Applications -- 4 ML Applications in Reactive Atomistic Simulations -- 4.1 ML Techniques for Training Reactive Atomistic Models -- 4.2 Accelerating Reactive Simulations -- 5 Analyzing Results from Atomistic Simulations -- 5.1 Representation Techniques -- 5.2 Dimensionality Reduction and Clustering -- 5.3 Dynamical Models and Analysis -- 5.4 Reaction Rates and Chemical Properties -- 6 Concluding Remarks -- References -- A Novel In Situ Machine Learning Framework for Intelligent Data Capture and Event Detection -- 1 Introduction -- 1.1 Overview of Related Work -- 1.2 Contributions and Organization -- 2 Approach -- 3 Results -- 3.1 Data Capture for Optimal I/O: Mantaflow Experiments -- 3.2 Detecting Physical Phenomena: Marine Ice Sheet Instability (MISI) -- 3.3 Reduced Order Modeling: Sample Mesh Generation for Hyper-Reduction -- 3.4 HPC Experiments -- 4 Conclusion -- References -- Machine-Learning for Stress Tensor Modelling in Large Eddy Simulation -- 1 Introduction -- 2 Classic Stress Tensor Models -- 2.1 Smagorinsky -- 2.2 Scale Similarity -- 2.3 Gradient Model -- 2.4 Clark Model.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5 Wall-Adapting Local Eddy-Viscosity (WALE) -- 3 Deconvolution-Based Modelling -- 4 Machine-Learning Based Models -- 4.1 Type (a) -- 4.2 Type (b) -- 4.3 Type (c) -- 5 A Note: Sub-grid Versus Sub-filter -- 6 Challenges of Data-Based Models -- 6.1 Universality -- 6.2 Choice and Pre-processing of Data -- 6.3 Training, Validation, Testing -- 6.4 Network Structure -- 6.5 LES Mesh Size -- 6.6 Performance Metrics -- 7 Summary -- References -- Machine Learning for Combustion Chemistry -- 1 Introduction and Motivation -- 2 Learning Reaction Rates -- 2.1 Chemistry Regression via ANNs -- 3 Learning Reaction Mechanisms -- 3.1 Learning Observables in Complex Reaction Mechanisms -- 3.2 Chemical Reaction Neural Networks -- 3.3 PCA-Based Chemistry Reduction and Other PCA Applications -- 3.4 Hybrid Chemistry Models and Implementation of ML Tools -- 3.5 Extending Functional Groups for Kinetics Modeling -- 3.6 Fuel Properties' Prediction Using ML -- 3.7 Transfer Learning for Reaction Chemistry -- 4 Chemistry Integration and Acceleration -- 5 Conclusions -- References -- Deep Convolutional Neural Networks for Subgrid-Scale Flame Wrinkling Modeling -- 1 Introduction -- 2 Wrinkling Models -- 3 Convolutional Neural Networks -- 3.1 Artificial Neural Networks -- 3.2 Convolutional Layers -- 3.3 From Segmentation to Predicting Physical Fields with CNNs -- 4 Training CNNs to Model Flame Wrinkling -- 4.1 Data Preparation -- 4.2 Building and Analyzing the U-Net -- 4.3 A Priori Validation -- 5 Discussion -- 6 Conclusion -- References -- Machine Learning Strategy for Subgrid Modeling of Turbulent Combustion Using Linear Eddy Mixing Based Tabulation -- 1 Introduction -- 2 ML for Modeling of Turbulent Combustion -- 2.1 ANN Model for Chemistry -- 2.2 LES of Turbulent Combustion Using ANN -- 3 Mathematical Formulation with ANN -- 3.1 Governing Equations and Subgrid Models.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2 ANN Based Modeling -- 4 Example Applications -- 4.1 Premixed Flame Turbulence -- 4.2 Non-premixed Temporally Evolving Jet Flame -- 4.3 SPRF Combustor -- 4.4 Cavity Strut Flame-Holder for Supersonic Combustion -- 5 Limitations of Past Studies -- 6 Summary and Outlook -- References -- On the Use of Machine Learning for Subgrid Scale Filtered Density Function Modelling in Large Eddy Simulations of Combustion Systems -- 1 Introduction -- 2 FDF Modelling -- 3 DNS Data Extraction and Manipulation -- 3.1 Low-Swirl Premixed Flame -- 3.2 MILD Combustion -- 3.3 Spray Combustion -- 4 Deep Neural Networks for Subgrid-Scale FDFs -- 4.1 Low-Swirl Premixed Flame -- 4.2 MILD Combustion -- 4.3 Spray Flame -- 5 Main Results -- 5.1 FDF Predictions and Generalisation -- 5.2 Reaction Rate Predictions -- 6 Conclusions and Prospects -- References -- Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches -- 1 Introduction -- 2 Governing Equations for Multicomponent Mixtures -- 3 Obtaining Data Matrices for Data-Driven Approaches -- 4 Reduced-Order Modeling -- 4.1 Data Preprocessing -- 4.2 Reducing the Number of Governing Equations -- 4.3 Low-Dimensional Manifold Topology -- 4.4 Nonlinear Regression -- 5 Applications of the Principal Component Transport in Combustion Simulations -- 5.1 A Priori Validations in a Zero-Dimensional Reactor -- 5.2 A Posteriori Validations on Sandia Flame D and F -- 6 Conclusions -- References -- AI Super-Resolution: Application to Turbulence and Combustion -- 1 Introduction -- 2 PIESRGAN -- 2.1 Architecture -- 2.2 Algorithm -- 2.3 Implementation Details -- 3 Application to Turbulence -- 3.1 Case Description -- 3.2 A Priori Results -- 3.3 A Posteriori Results -- 3.4 Discussion -- 4 Application to Reactive Sprays -- 4.1 Case Description -- 4.2 Results -- 4.3 Discussion -- 5 Application to Premixed Combustion.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.1 Case Description -- 5.2 A Priori Results -- 5.3 A Posteriori Results -- 5.4 Discussion -- 6 Application to Non-premixed Combustion -- 6.1 Case Description -- 6.2 A Priori Results -- 6.3 A Posteriori Results -- 6.4 Discussion -- 7 Conclusions -- References -- Machine Learning for Thermoacoustics -- 1 Introduction -- 1.1 The Physical Mechanism Driving Thermoacoustic Instability -- 1.2 The Extreme Sensitivity of Thermoacoustic Systems -- 1.3 The Opportunity for Data-Driven Methods in Thermoacoustics -- 2 Physics-Based Bayesian Inference Applied to a Complete System -- 2.1 Laplace's Method -- 2.2 Accelerating Laplace's Method with Adjoint Methods -- 2.3 Applying Laplace's Method to a Complete Thermoacoustic System -- 3 Physics-Based Statistical Inference Applied to a Flame -- 3.1 Assimilating Experimental Data with an Ensemble Kalman Filter -- 3.2 Assimilating with a Bayesian Neural Network Ensemble -- 4 Identifying Precursors to Thermoacoustic Instability with BayNNEs -- 4.1 Laboratory Combustor -- 4.2 Intermediate Pressure Industrial Fuel Spray Nozzle -- 4.3 Full Scale Aeroplane Engine -- 5 Conclusion -- References -- Summary -- Index.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parente, Alessandro.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Swaminathan, Nedunchezhian</subfield><subfield code="t">Machine Learning and Its Application to Reacting Flows</subfield><subfield code="d">Cham : Springer International Publishing AG,c2023</subfield><subfield code="z">9783031162473</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Energy Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=7167859</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>