A Guide to Additive Manufacturing.

Saved in:
Bibliographic Details
Superior document:Springer Tracts in Additive Manufacturing Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2022.
©2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Series:Springer Tracts in Additive Manufacturing Series
Online Access:
Physical Description:1 online resource (347 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Acknowledgement
  • Introduction
  • Contents
  • List of Figures
  • List of Tables
  • 1 Introduction to Additive Manufacturing
  • 1.1 What is Additive Manufacturing
  • 1.2 Why Do We Need Additive Manufacturing
  • 1.3 Additive Manufacturing Classification
  • 1.4 Vat Photopolymerization-VPP
  • 1.4.1 Stereolithography-VPP-UVL/P (SLA)
  • 1.4.2 Vat Photopolymerisation Digital Light Processing-VPP-UVM/P (DLP)
  • 1.5 Material Jetting (MJT)
  • 1.5.1 PolyJet
  • 1.6 Binder Jetting (BJT)
  • 1.6.1 3D Printing 3DP
  • 1.7 Powder Bed Fusion Technologies (PBF)
  • 1.7.1 Introduction to Powder Bed Fusion Technologies
  • 1.7.2 Electron Beam Technology (PBF-EB/M)
  • 1.7.3 Laser Melting (PBF-LB/M) Technology
  • 1.7.4 Selective Laser Sintering (PBF-LB/P) Technology
  • 1.7.5 HP Multi Jet Fusion (PBF-IrL/P) Technology
  • 1.7.6 Metal Binder Jetting (MBJT) Technology
  • 1.8 Material Extrusion Additive Manufacturing (MEX) Technologies
  • 1.8.1 Material Extrusion with Plungers
  • 1.8.2 Material Extrusion with Filaments
  • 1.8.3 Material Extrusion with Screws
  • 1.8.4 Disadvantages of Using MEX
  • References
  • 2 General Process Workflow in Additive Manufacturing
  • 2.1 Pre-processing for Additive Manufacturing
  • 2.1.1 File Formats Used in Additive Manufacturing
  • 2.1.2 Part Placement in Machine Envelope, Slicing and Machine Setup
  • 2.2 Build and Post-processing
  • References
  • 3 Standardisation in AM
  • 3.1 Introduction to Standards
  • 3.1.1 Significance of Standards
  • 3.1.2 Standardisation Bodies
  • 3.2 AM Standards
  • 3.2.1 Structure of AM Standards
  • 3.2.2 ASTM International/ASTM F42
  • 3.2.3 CEN/TC 438
  • 3.2.4 ISO/TC 261
  • 3.3 Reading, Writing and Retrieving Standards
  • 3.3.1 Reading Standards
  • 3.3.2 Writing Standards
  • 3.4 Conclusion
  • 3.5 External Resources
  • References
  • 4 Design for AM
  • 4.1 The General Thought Process of DfAM.
  • 4.2 The Economics of DfAM
  • 4.2.1 Machine Costs
  • 4.2.2 Material Costs
  • 4.2.3 Post-processing Costs
  • 4.2.4 Time Factors That Are Affected by Design
  • 4.2.5 Economics Case Study: Metal AM Manufactured Hydraulic Manifold
  • 4.3 Polymer Design Guidelines
  • 4.3.1 Designing for Material Extrusion (MEX)
  • 4.3.2 Designing for Polymer Powder Bed Fusion (PBF-LB/P)
  • 4.3.3 Designing for Vat Photopolymerisation (VPP)
  • 4.4 Metal Design Guidelines
  • 4.4.1 General Design for Metal PBF
  • 4.4.2 Design for Laser Powder Bed Fusion (PBF-LB/M)
  • 4.4.3 Design for PBF-EB/M Guidelines
  • References
  • 5 General Process Simulations
  • 5.1 Simulation
  • 5.1.1 Geometry Definition
  • 5.1.2 Discretization
  • 5.1.3 Material Properties
  • 5.1.4 Boundary Conditions
  • 5.1.5 Post-processing Results
  • 5.2 AM Build Process Simulation
  • 5.2.1 Geometry Definition
  • 5.2.2 Discretization
  • 5.2.3 Material Definition
  • 5.2.4 Build-Process Parameters
  • 5.2.5 Post-processing
  • 5.2.6 Limitations
  • 5.3 Optimization
  • 5.3.1 Topology Optimization
  • 5.3.2 Define Design Space
  • 5.3.3 Define Non-design Space
  • 5.3.4 Define Boundary Conditions
  • 5.3.5 Define Constraints and Objectives
  • 5.3.6 Define Optimization Settings
  • 5.3.7 Solve
  • 5.3.8 Interpret the Results
  • 5.3.9 Validate
  • 5.3.10 Topologic Design with Altair Software
  • 5.3.11 Topologic Design with Altair Software for PBF-EB/M
  • 5.3.12 Topologic Design with Altair Software for PBF-LB/P (SLS)
  • 5.4 Lattice-Based Topology Optimization
  • 5.4.1 Lattice Type
  • 5.4.2 Define the Cell Size
  • 5.4.3 Define the Shell Thickness
  • 5.4.4 Define the Minimum/Maximum Density
  • 5.4.5 Interpret the Results
  • 5.4.6 Validate
  • 5.5 Non-parametric Mesh Modelling
  • References
  • 6 Applications of AM
  • 6.1 AM in Tool Making Application
  • 6.1.1 AM Silicone Short-Run Moulds
  • 6.1.2 AM PolyJet Bridge Moulds.
  • 6.2 Design Rules for Bridge PolyJet Moulds
  • 6.2.1 AM (Steel) Hard Moulds
  • 6.2.2 Efficient AM Moulds-Conformal Cooling
  • 6.2.3 Efficient AM Moulds-Optimised Build Time in Tooling
  • 6.3 AM Application in Medicine
  • 6.3.1 Medical Research and Development
  • 6.3.2 Preclinical Testing and Planning
  • 6.3.3 Production of Medical Devices
  • 6.3.4 AM Pharmaceutical Application
  • 6.3.5 AM for Bioprinting/Tissue Fabrication
  • 6.4 AM Applications in the Transport Industry
  • 6.4.1 Aerospace Industry
  • 6.4.2 Railway Industry
  • 6.4.3 Maritime Transport Industry
  • 6.4.4 Automotive Industry
  • References
  • 7 Development of Material and Processing Parameters for AM
  • 7.1 Development of Materials for Material Extrusion (MEX)
  • 7.1.1 Compounding of Special Materials for Material Extrusion AM
  • 7.1.2 Differential Scanning Calorimetry of Polymeric Materials for MEX
  • 7.1.3 High Pressure Capillary Rheometry of Polymeric Materials for MEX
  • 7.1.4 Rotational Rheometry of Polymeric Materials for MEX
  • 7.1.5 Thermal Conductivity of Polymeric Materials for MEX
  • 7.1.6 Filament Production for MEX
  • 7.2 Development of Materials for PBF Technologies
  • 7.2.1 Metallic Materials
  • 7.2.2 Powder Manufacture and Metal Powders for Additive Manufacturing (AM)
  • 7.2.3 Tests for AM Powder Characterization
  • 7.2.4 Processing Parameters Determination for PBF-EB/M
  • 7.2.5 Qualification of the PBF-EB/M Production
  • 7.2.6 Powder Recycling for PBF-EB/M
  • 7.2.7 Parts Characterizing and Qualification
  • 7.3 Development of Materials for PBF-LB/P
  • 7.3.1 Processing Parameters Determination for PBF-LB/P
  • 7.3.2 Qualification of the PBF-LB/P Production
  • 7.3.3 Powder Blending and Recycling for PBF-LB/P
  • References
  • 8 Development of FGM and FGAM
  • 8.1 Functionally Graded Material (FGM)
  • 8.1.1 Benefits of FGM
  • 8.1.2 Classifications of FGM.
  • 8.1.3 Manufacturing Methods for FGM
  • 8.2 Functionally Graded Additive Manufacturing (FGAM)
  • 8.2.1 The FGAM Process Chain
  • 8.2.2 Design and Modelling of FGAM Parts
  • 8.2.3 FGAM Technologies
  • 8.2.4 FGAM Applications
  • 8.3 Conclusion
  • References
  • Correction to: General Process Simulations
  • Correction to: Chapter 5 in: D. Godec et al. (eds.), A Guide to Additive Manufacturing, Springer Tracts in Additive Manufacturing, https://doi.org/10.1007/978-3-031-05863-9_5
  • Conclusion
  • Appendix A-List of AM Standards
  • Conclusion
  • Appendix A-List of AM Standards.