Environmental Technologies to Treat Selenium Pollution : : Principles and Engineering.

Saved in:
Bibliographic Details
Superior document:Integrated Environmental Technology Series
:
TeilnehmendeR:
Place / Publishing House:London : : IWA Publishing,, 2021.
Ã2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Integrated Environmental Technology Series
Online Access:
Physical Description:1 online resource (404 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Cover
  • Contents
  • Preface
  • List of Contributors
  • Part I: The Selenium Cycle
  • Chapter 1: Selenium in the environment
  • 1.1 INTRODUCTION
  • 1.1.1 Historical background
  • 1.1.2 The rising of interest in selenium research
  • 1.1.3 Microbial processing of selenium
  • 1.2 SELENIUM CHEMISTRY
  • 1.2.1 Chemical features of selenium
  • 1.2.2 Pourbaix diagram of selenium in water The behaviour of selenium in aqueous solution is dependent on redox
  • 1.2.3 Global uses of selenium
  • 1.3 SELENIUM IN THE ENVIRONMENT
  • 1.3.1 Selenium mineralogy
  • 1.3.2 Selenium geochemistry
  • 1.3.3 Source of selenium in the environment
  • 1.3.3.1 Selenium in soils
  • 1.3.3.2 Selenium in waters
  • 1.3.3.3 Selenium in air
  • 1.3.3.4 Selenium in plants
  • 1.3.3.5 Selenium in food and feed
  • 1.3.3.6 Selenium in animals and humans
  • 1.4 EFFECTS AND BIOAVAILABILITY OF NANO-SELENIUM (SeNPs)
  • REFERENCES
  • Chapter 2: Radioactive selenium: origin and environmental dispersion scenarios
  • 2.1 INTRODUCTION
  • 2.2 CHARACTERISTICS OF RADIOACTIVE SELENIUM
  • 2.2.1 Environmental persistence: half-lives and decay modes
  • 2.2.2 Sources and applications
  • 2.2.2.1 Natural geogenic 82Se
  • 2.2.2.2 Anthropogenic radiotracer 75Se
  • 2.2.2.3 Anthropogenic 79Se from nuclear fission
  • 2.3 SAMPLE COLLECTION AND QUANTIFICATION TECHNIQUES
  • 2.3.1 Environmental sampling
  • 2.3.2 Analytical methods
  • 2.4 PRODUCTION AND MOBILITY OF 79Se IN NUCLEAR WASTE REPOSITORIES
  • 2.4.1 Estimated activities in the nuclear waste
  • 2.4.2 Underground reactivity and dispersion
  • 2.4.2.1 The multi-barrier system: from the fuel to the host rock
  • 2.4.2.2 Reactivity within the host rock: mobility and dispersion of Se species
  • 2.4.2.3 Simulated environmental releases
  • 2.5 ENVIRONMENTAL DISPERSION SCENARIOS
  • 2.5.1 Conceptual model and assumptions.
  • 2.5.2 Biogeochemical behaviour in aquatic systems
  • 2.5.3 Biogeochemical behaviour in terrestrial systems
  • 2.6 IMPACT OF RADIOACTIVE Se ON THE BIOSPHERE: INSIGHTS FROM ECOLOGICAL MODELS
  • 2.6.1 Bioaccumulation factors in aquatic and terrestrial systems
  • 2.6.2 Human radiotoxicity: exposure pathways and estimated doses
  • 2.7 CONCLUSIONS
  • REFERENCES
  • Chapter 3: Microbial reduction of selenium oxyanions: energy-yielding and detoxification reactions
  • 3.1 INTRODUCTION
  • 3.2 SELENIUM OXYANIONS AS FINAL ELECTRON ACCEPTORS IN BACTERIAL ENERGY METABOLISM
  • 3.2.1 Bacterial selenate respiration
  • 3.2.2 Bacterial selenite respiration
  • 3.3 STRATEGIES FOR THE DETOXIFICATION OF SELENIUM OXYANIONS IN BACTERIA
  • 3.3.1 Enzymatic detoxification
  • 3.3.2 Thiol driven reactions
  • 3.3.2.1 Reaction mechanisms
  • 3.3.2.2 Microbial strategies for thiol based Se detoxification
  • 3.3.2.2.1 Gram negative bacteria
  • 3.3.2.2.2 Gram positive bacteria
  • 3.3.3 Siderophore driven detoxification
  • 3.4 BIOTRANSFORMATION OF SELENIUM OXYANIONS BY ARCHAEA
  • 3.5 FUNGAL TRANSFORMATION OF SELENIUM OXYANIONS
  • 3.5.1 Introduction
  • 3.5.2 Yeasts
  • 3.5.3 Filamentous fungi
  • 3.5.4 Higher fungi (mushrooms)
  • 3.5.4.1 Ascomycetes
  • 3.5.4.2 Basidiomycetes
  • 3.5.5 Selenium reduction by cell extracts
  • 3.6 FUTURE PERSPECTIVES
  • REFERENCES
  • Chapter 4: Microbial ecology of selenium-respiring bacteria
  • 4.1 SELENIUM, SULFUR, AND NITROGEN IN A COMMON AQUATIC ENVIRONMENT
  • 4.2 SUBSTRATE PARTITIONING, ENERGETICS, AND BIOMASS YIELD
  • 4.2.1 Electron-acceptor reductions
  • 4.2.2 Oxidation of a common electron donor
  • 4.2.3 Energy reactions
  • 4.2.4 Considering biomass synthesis
  • 4.3 MATHEMATICAL MODEL OF DENITRIFYING HETEROTROPHIC BACTERIA, SELENIUM-RESPIRING BACTERIA, AND SULFATE-REDUCING BACTERIA
  • 4.4 MINIMUM SRT AND DONOR-SUBSTRATE CONCENTRATION.
  • 4.5 SIMULATION OF SeRB POPULATION DYNAMICS
  • 4.5.1 Model comparison with observed selenium oxyanion reduction
  • 4.5.2 Ecology of denitrifying heterotrophic bacteria, selenium-respiring bacteria, and sulfate-reducing bacteria
  • 4.6 KEY POINTS
  • REFERENCES
  • Part II: Remediation of Selenium Contamination
  • Chapter 5: Reactivity and selectivity of zerovalent iron toward selenium oxyanions under aerobic conditions
  • 5.1 AQUEOUS CHEMISTRY OF ZVI WITH SELENIUM
  • 5.2 WMF ENHANCES THE REACTIVITY AND SELECTIVITY OF ZVI TOWARD Se(IV) AND Se(VI)
  • 5.2.1 Effect of WMF on the reactivity of ZVI toward Se(IV)/Se(VI)
  • 5.2.2 Effect of WMF on the selectivity of ZVI toward Se(IV)/Se(VI)
  • 5.2.3 Contributions of WMF to the improved reactivity and selectivity of ZVI toward Se(IV)/Se(VI)
  • 5.3 FERROUS ION ENHANCES THE REACTIVITY AND SELECTIVITY OF ZVI TOWARD Se(VI)
  • 5.3.1 Influence of Fe(II) on the reactivity of ZVI towards Se(VI)
  • 5.3.2 Influence of Fe(II) on the selectivity of ZVI towards Se(VI)
  • 5.3.3 Role of Fe(II) in improving the reactivity and selectivity of ZVI for Se(VI) reduction
  • 5.4 SULFIDATION TREATMENT ENHANCES THE REACTIVITY AND SELECTIVITY OF ZVI TOWARD Se(VI)
  • 5.4.1 Influence of sulfidation on the reactivity of ZVI toward Se(VI)
  • 5.4.2 Influence of sulfidation on the selectivity of ZVI toward Se(VI)
  • 5.4.3 Coupled effects of sulfidation and ferrous dosing on Se(VI) removal by ZVI
  • 5.5 OUTLOOK
  • REFERENCES
  • Chapter 6: Biological treatment technologies
  • 6.1 INTRODUCTION
  • 6.2 PRINCIPLES OF SELENIUM BIOREMEDIATION IN BIOREACTOR SYSTEMS
  • 6.3 HISTORY AND CURRENT PRACTICE OF SELENIUM BIOREMEDIATION
  • 6.4 ATTACHED BIOFILM REACTORS
  • 6.4.1 Packed bed reactor
  • 6.4.2 Fluidized bed reactor
  • 6.4.3 Combination of expanded bed and packed bed reactor configuration
  • 6.4.4 Moving bed biofilm reactor (MBBR).
  • 6.5 SUSPENDED GROWTH SYSTEMS
  • 6.5.1 Biofloc systems
  • 6.5.1.1 Continuous stirred tank system
  • 6.5.1.2 Activated sludge systems
  • 6.5.1.3 Membrane bioreactors
  • 6.5.2 Granular sludge systems
  • 6.6 PASSIVE AND SEMI-PASSIVE BIOREACTOR SYSTEMS
  • 6.6.1 Constructed wetlands
  • 6.6.2 Biochemical reactors
  • 6.6.3 Gravel bed reactors
  • 6.6.4 Submerged rock fills in mining applications
  • 6.7 OTHER REACTOR TYPES
  • 6.7.1 Fungal based bioreactors
  • 6.7.2 Electro-biochemical reactor
  • 6.7.3 Hydrogen based membrane biofilm reactor
  • 6.8 FUTURE PERSPECTIVES FOR OPTIMIZING BIOLOGICAL SELENIUM REMOVAL TECHNOLOGIES
  • 6.8.1 Selenium measurement and speciation
  • 6.8.2 Bioavailability of reduced selenium species in treated effluents
  • 6.8.3 Bioprocess operations
  • 6.8.3.1 Bioreactor sizing and design optimization
  • 6.8.3.2 Better understanding and optimization of passive treatment designs
  • 6.8.3.3 Optimization of selenium reduction at municipal wastewater treatment plants
  • 6.8.3.4 Selenium treatment residuals handling and long-term management
  • REFERENCES
  • Chapter 7: In situ and ex situ bioremediation of seleniferous soils and sediments
  • 7.1 INTRODUCTION
  • 7.2 METABOLIC ROLE OF SELENIUM
  • 7.2.1 Selenium essentiality
  • 7.2.2 Selenium toxicity
  • 7.2.3 Selenium deficiency
  • 7.2.4 Selenium bioavailability
  • 7.3 SELENIUM GEOCHEMISTRY IN SELENIFEROUS SOILS AND SEDIMENTS
  • 7.4 BIOREMEDIATION OF SELENIFEROUS SOILS
  • 7.4.1 In situ treatment
  • 7.4.2 Ex situ treatment by soil flushing
  • 7.4.3 Ex situ treatment by soil washing
  • 7.5 BIOLOGICAL TREATMENT OF SELENIFEROUS SOIL WASHING WATER AND SELENIUM-CONTAMINATED GROUNDWATER
  • 7.5.1 UASB reactors
  • 7.5.1.1 Treatment of soil leachate
  • 7.5.1.2 Presence of tellurium
  • 7.5.1.3 Presence of other oxyanions
  • 7.5.1.3.1 Granular versus biofilm reactor systems.
  • 7.5.1.3.2 Adsorption coupled to biological selenium removal processes
  • 7.5.1.4 Presence of heavy metals
  • 7.5.2 Aerobic reactors
  • 7.5.3 Membrane reactors
  • 7.5.4 Bioelectrochemical processes
  • 7.6 COUPLING SELENIFEROUS SOIL REMEDIATION TO RESOURCE RECOVERY
  • 7.6.1 Biofortification
  • 7.6.2 Recovery of biologically produced nanomaterials
  • REFERENCES
  • Part III: Selenium Biofortification
  • Chapter 8: Selenium hyperaccumulation in plants
  • 8.1 INTRODUCTION
  • 8.2 VARIATION IN Se ACCUMULATION BETWEEN HYPERACCUMULATORS AND NON-HYPERACCUMULATORS
  • 8.2.1 Se uptake in plants
  • 8.2.2 Se accumulators and hyperaccumulating plants
  • 8.2.3 Se-hyperaccumulating plant species
  • 8.2.4 Se uptake in Se-hyperaccumulators
  • 8.3 METABOLIC PATHWAYS SUPPORTING Se HYPERACCUMULATION
  • 8.3.1 Se metabolism in non-hyperaccumulating plants
  • 8.3.2 Organo-Se synthesis in hyperaccumulating plants
  • 8.3.3 Enzymology of organo-Se formation
  • 8.4 EVOLUTION OF THE Se HYPERACCUMULATION TRAIT
  • 8.4.1 Main driving-factors
  • 8.4.2 Metabolic defense mechanisms
  • 8.4.3 Plant ecology
  • 8.5 POTENTIAL USES OF Se-HYPERACCUMULATORS IN PHYTOTECHNOLOGIES
  • 8.5.1 Phytoremediation
  • 8.5.2 Biofortification
  • 8.5.3 Agromining
  • 8.6 CONCLUSION
  • REFERENCES
  • Chapter 9: Selenium biofortification for human and animal nutrition
  • 9.1 INTRODUCTION
  • 9.2 SELENIUM TOXICITY AND DEFICIENCY FOR HUMANS AND ANIMALS
  • 9.2.1 Se toxicity
  • 9.2.2 Se deficiency
  • 9.2.3 Se in nutrition
  • 9.3 SELENIUM BIOFORTIFICATION STRATEGIES FOR ADDRESSING Se DEFICIENCY
  • 9.3.1 Conventional plant breeding and genetic engineering
  • 9.3.2 Agronomic biofortification
  • 9.3.2.1 Soil inorganic Se fertilizer application
  • 9.3.2.2 Foliar Se fertilizer application
  • 9.3.2.3 Novel Se fertilizers
  • 9.3.2.3.1 Se-enriched organic materials as Se fertilizers
  • 9.3.2.3.2 Nano-Se for biofortification.
  • 9.3.2.4 Microbial assistance of biofortification.