Computational Physiology : : Simula Summer School 2021 Student Reports.

Saved in:
Bibliographic Details
Superior document:Simula SpringerBriefs on Computing Series ; v.12
:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2022.
Ã2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Series:Simula SpringerBriefs on Computing Series
Online Access:
Physical Description:1 online resource (117 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006978014
ctrlnum (MiAaPQ)5006978014
(Au-PeEL)EBL6978014
(OCoLC)1315573272
collection bib_alma
record_format marc
spelling McCabe, Kimberly J.
Computational Physiology : Simula Summer School 2021 Student Reports.
1st ed.
Cham : Springer International Publishing AG, 2022.
Ã2022.
1 online resource (117 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Simula SpringerBriefs on Computing Series ; v.12
Intro -- Preface -- Acknowledgements -- Contents -- Chapter 1 A Pipeline for Automated Coordinate Assignment in Anatomically Accurate Biventricular Models -- 1.1 Introduction -- 1.2 Methods -- 1.2.1 Semi-Automated Surface Extraction -- Algorithm 1 -- 1.2.2 Biventricular Coordinate System -- 1.2.2.1 Creation of the Coordinate System Cobiveco -- 1.2.3 Mapping Vector Fields -- 1.3 Results -- 1.4 Conclusion -- 1.4.1 Limitations -- References -- Chapter 2 3D Simulations of Fetal and Maternal Ventricular Excitation for Investigating the Abdominal ECG -- 2.1 Introduction -- 2.2 Methods -- 2.2.1 Geometrical mesh construction -- 2.2.2 Electrophysiological modelling -- 2.2.3 Extracellular potential measurements -- 2.2.4 Fetal ECG extraction using signal processing methods -- 2.3 Results -- 2.4 Discussion -- 2.5 Conclusions -- References -- Chapter 3 Ordinary Differential Equation-based Modeling of Cells in Human Cartilage -- 3.1 Introduction -- 3.2 Methods -- 3.2.1 Mathematical modelling of ATP-sensitive K+ currents -- 3.2.2 Population of Models -- 3.3 Results -- 3.3.1 Validation -- 3.3.2 Results for the ATP-sensitive K+ currents -- 3.3.3 Populations of Models -- 3.4 Discussion and Conclusion -- References -- Chapter 4 Conduction Velocity in Cardiac Tissue as Function of Ion Channel Conductance and Distribution -- 4.1 Introduction -- 4.2 Models and methods -- 4.2.1 The monodomain model -- 4.2.2 The EMI model -- 4.3 Results -- 4.4 Discussion -- 4.4.1 Influence of ion channel conductance on CV -- 4.4.2 Influence of ion channel distribution -- 4.5 Conclusions -- References -- Chapter 5 Computational Prediction of Cardiac Electropharmacology - How Much Does the Model Matter? -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 Models of Cardiac Electrophysiology -- 5.2.2 Feature Extraction -- 5.2.3 Sensitivity Analysis and Translation -- 5.3 Results.
5.3.1 Model Translation -- 5.3.2 Translation Discrepancies -- 5.4 Discussion -- 5.5 Conclusion -- References -- Chapter 6 A Computational Study of Flow Instabilities in Aneurysms -- 6.1 Introduction -- 6.2 Methods -- 6.2.1 Baseflow equations -- 6.2.2 Flow perturbations and instability -- 6.2.3 Discretization -- 6.2.4 Computational Methodology -- 6.3 Results -- 6.4 Discussion -- References -- Chapter 7 Investigating the Multiscale Impact of Deoxyadenosine Triphosphate (dATP) on Pulmonary Arterial Hypertension (PAH) Induced Heart Failure -- 7.1 Introduction -- 7.2 Methods -- 7.2.1 Cell Level Changes -- 7.2.1.1 The SERCA Pump and Calcium transients -- 7.2.1.2 Cross-bridge cycling kinetics -- 7.2.2 Organ Level Model -- 7.3 Results -- 7.4 Discussion and Conclusion -- 7.5 Acknowledgements -- 7.6 Supplementary Information -- References -- Chapter 8 Identifying Ionic Channel Block in a Virtual Cardiomyocyte Population Using Machine Learning Classifiers -- 8.1 Introduction -- 8.2 Methods -- 8.2.1 Data -- 8.2.2 Preprocessing -- 8.2.2.1 Noise -- 8.2.2.2 Normalizing -- 8.2.2.3 Subtract drug signals from control signals -- 8.2.2.4 Vt and Ca2+ concatenation -- 8.2.3 Multi-label classification methods -- 8.2.3.1 Binary relevance -- 8.2.3.2 Classifier chains -- 8.2.3.3 Label Powerset -- 8.2.4 Model architectures -- 8.2.4.1 Gaussian Naive Bayes -- 8.2.4.2 Support Vector Classifier -- 8.2.4.3 XGBoost -- 8.2.4.4 Feed Forward Neural Network -- 8.2.4.5 Convolutional Neural Network -- 8.2.4.6 Recurrent Neural Network -- 8.2.5 Model selection and hyperparameter tuning -- 8.2.6 Scoring and metrics -- 8.2.6.1 Accuracy -- 8.2.6.2 Recall and precision -- 8.2.7 Explainable AI -- 8.2.7.1 LIME (Local Interpretable Model-Agnostic Explanations) -- 8.3 Results -- 8.4 Discussion -- 8.5 Conclusion -- References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Print version: McCabe, Kimberly J. Computational Physiology Cham : Springer International Publishing AG,c2022 9783031051630
ProQuest (Firm)
Simula SpringerBriefs on Computing Series
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6978014 Click to View
language English
format eBook
author McCabe, Kimberly J.
spellingShingle McCabe, Kimberly J.
Computational Physiology : Simula Summer School 2021 Student Reports.
Simula SpringerBriefs on Computing Series ;
Intro -- Preface -- Acknowledgements -- Contents -- Chapter 1 A Pipeline for Automated Coordinate Assignment in Anatomically Accurate Biventricular Models -- 1.1 Introduction -- 1.2 Methods -- 1.2.1 Semi-Automated Surface Extraction -- Algorithm 1 -- 1.2.2 Biventricular Coordinate System -- 1.2.2.1 Creation of the Coordinate System Cobiveco -- 1.2.3 Mapping Vector Fields -- 1.3 Results -- 1.4 Conclusion -- 1.4.1 Limitations -- References -- Chapter 2 3D Simulations of Fetal and Maternal Ventricular Excitation for Investigating the Abdominal ECG -- 2.1 Introduction -- 2.2 Methods -- 2.2.1 Geometrical mesh construction -- 2.2.2 Electrophysiological modelling -- 2.2.3 Extracellular potential measurements -- 2.2.4 Fetal ECG extraction using signal processing methods -- 2.3 Results -- 2.4 Discussion -- 2.5 Conclusions -- References -- Chapter 3 Ordinary Differential Equation-based Modeling of Cells in Human Cartilage -- 3.1 Introduction -- 3.2 Methods -- 3.2.1 Mathematical modelling of ATP-sensitive K+ currents -- 3.2.2 Population of Models -- 3.3 Results -- 3.3.1 Validation -- 3.3.2 Results for the ATP-sensitive K+ currents -- 3.3.3 Populations of Models -- 3.4 Discussion and Conclusion -- References -- Chapter 4 Conduction Velocity in Cardiac Tissue as Function of Ion Channel Conductance and Distribution -- 4.1 Introduction -- 4.2 Models and methods -- 4.2.1 The monodomain model -- 4.2.2 The EMI model -- 4.3 Results -- 4.4 Discussion -- 4.4.1 Influence of ion channel conductance on CV -- 4.4.2 Influence of ion channel distribution -- 4.5 Conclusions -- References -- Chapter 5 Computational Prediction of Cardiac Electropharmacology - How Much Does the Model Matter? -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 Models of Cardiac Electrophysiology -- 5.2.2 Feature Extraction -- 5.2.3 Sensitivity Analysis and Translation -- 5.3 Results.
5.3.1 Model Translation -- 5.3.2 Translation Discrepancies -- 5.4 Discussion -- 5.5 Conclusion -- References -- Chapter 6 A Computational Study of Flow Instabilities in Aneurysms -- 6.1 Introduction -- 6.2 Methods -- 6.2.1 Baseflow equations -- 6.2.2 Flow perturbations and instability -- 6.2.3 Discretization -- 6.2.4 Computational Methodology -- 6.3 Results -- 6.4 Discussion -- References -- Chapter 7 Investigating the Multiscale Impact of Deoxyadenosine Triphosphate (dATP) on Pulmonary Arterial Hypertension (PAH) Induced Heart Failure -- 7.1 Introduction -- 7.2 Methods -- 7.2.1 Cell Level Changes -- 7.2.1.1 The SERCA Pump and Calcium transients -- 7.2.1.2 Cross-bridge cycling kinetics -- 7.2.2 Organ Level Model -- 7.3 Results -- 7.4 Discussion and Conclusion -- 7.5 Acknowledgements -- 7.6 Supplementary Information -- References -- Chapter 8 Identifying Ionic Channel Block in a Virtual Cardiomyocyte Population Using Machine Learning Classifiers -- 8.1 Introduction -- 8.2 Methods -- 8.2.1 Data -- 8.2.2 Preprocessing -- 8.2.2.1 Noise -- 8.2.2.2 Normalizing -- 8.2.2.3 Subtract drug signals from control signals -- 8.2.2.4 Vt and Ca2+ concatenation -- 8.2.3 Multi-label classification methods -- 8.2.3.1 Binary relevance -- 8.2.3.2 Classifier chains -- 8.2.3.3 Label Powerset -- 8.2.4 Model architectures -- 8.2.4.1 Gaussian Naive Bayes -- 8.2.4.2 Support Vector Classifier -- 8.2.4.3 XGBoost -- 8.2.4.4 Feed Forward Neural Network -- 8.2.4.5 Convolutional Neural Network -- 8.2.4.6 Recurrent Neural Network -- 8.2.5 Model selection and hyperparameter tuning -- 8.2.6 Scoring and metrics -- 8.2.6.1 Accuracy -- 8.2.6.2 Recall and precision -- 8.2.7 Explainable AI -- 8.2.7.1 LIME (Local Interpretable Model-Agnostic Explanations) -- 8.3 Results -- 8.4 Discussion -- 8.5 Conclusion -- References.
author_facet McCabe, Kimberly J.
author_variant k j m kj kjm
author_sort McCabe, Kimberly J.
title Computational Physiology : Simula Summer School 2021 Student Reports.
title_sub Simula Summer School 2021 Student Reports.
title_full Computational Physiology : Simula Summer School 2021 Student Reports.
title_fullStr Computational Physiology : Simula Summer School 2021 Student Reports.
title_full_unstemmed Computational Physiology : Simula Summer School 2021 Student Reports.
title_auth Computational Physiology : Simula Summer School 2021 Student Reports.
title_new Computational Physiology :
title_sort computational physiology : simula summer school 2021 student reports.
series Simula SpringerBriefs on Computing Series ;
series2 Simula SpringerBriefs on Computing Series ;
publisher Springer International Publishing AG,
publishDate 2022
physical 1 online resource (117 pages)
edition 1st ed.
contents Intro -- Preface -- Acknowledgements -- Contents -- Chapter 1 A Pipeline for Automated Coordinate Assignment in Anatomically Accurate Biventricular Models -- 1.1 Introduction -- 1.2 Methods -- 1.2.1 Semi-Automated Surface Extraction -- Algorithm 1 -- 1.2.2 Biventricular Coordinate System -- 1.2.2.1 Creation of the Coordinate System Cobiveco -- 1.2.3 Mapping Vector Fields -- 1.3 Results -- 1.4 Conclusion -- 1.4.1 Limitations -- References -- Chapter 2 3D Simulations of Fetal and Maternal Ventricular Excitation for Investigating the Abdominal ECG -- 2.1 Introduction -- 2.2 Methods -- 2.2.1 Geometrical mesh construction -- 2.2.2 Electrophysiological modelling -- 2.2.3 Extracellular potential measurements -- 2.2.4 Fetal ECG extraction using signal processing methods -- 2.3 Results -- 2.4 Discussion -- 2.5 Conclusions -- References -- Chapter 3 Ordinary Differential Equation-based Modeling of Cells in Human Cartilage -- 3.1 Introduction -- 3.2 Methods -- 3.2.1 Mathematical modelling of ATP-sensitive K+ currents -- 3.2.2 Population of Models -- 3.3 Results -- 3.3.1 Validation -- 3.3.2 Results for the ATP-sensitive K+ currents -- 3.3.3 Populations of Models -- 3.4 Discussion and Conclusion -- References -- Chapter 4 Conduction Velocity in Cardiac Tissue as Function of Ion Channel Conductance and Distribution -- 4.1 Introduction -- 4.2 Models and methods -- 4.2.1 The monodomain model -- 4.2.2 The EMI model -- 4.3 Results -- 4.4 Discussion -- 4.4.1 Influence of ion channel conductance on CV -- 4.4.2 Influence of ion channel distribution -- 4.5 Conclusions -- References -- Chapter 5 Computational Prediction of Cardiac Electropharmacology - How Much Does the Model Matter? -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 Models of Cardiac Electrophysiology -- 5.2.2 Feature Extraction -- 5.2.3 Sensitivity Analysis and Translation -- 5.3 Results.
5.3.1 Model Translation -- 5.3.2 Translation Discrepancies -- 5.4 Discussion -- 5.5 Conclusion -- References -- Chapter 6 A Computational Study of Flow Instabilities in Aneurysms -- 6.1 Introduction -- 6.2 Methods -- 6.2.1 Baseflow equations -- 6.2.2 Flow perturbations and instability -- 6.2.3 Discretization -- 6.2.4 Computational Methodology -- 6.3 Results -- 6.4 Discussion -- References -- Chapter 7 Investigating the Multiscale Impact of Deoxyadenosine Triphosphate (dATP) on Pulmonary Arterial Hypertension (PAH) Induced Heart Failure -- 7.1 Introduction -- 7.2 Methods -- 7.2.1 Cell Level Changes -- 7.2.1.1 The SERCA Pump and Calcium transients -- 7.2.1.2 Cross-bridge cycling kinetics -- 7.2.2 Organ Level Model -- 7.3 Results -- 7.4 Discussion and Conclusion -- 7.5 Acknowledgements -- 7.6 Supplementary Information -- References -- Chapter 8 Identifying Ionic Channel Block in a Virtual Cardiomyocyte Population Using Machine Learning Classifiers -- 8.1 Introduction -- 8.2 Methods -- 8.2.1 Data -- 8.2.2 Preprocessing -- 8.2.2.1 Noise -- 8.2.2.2 Normalizing -- 8.2.2.3 Subtract drug signals from control signals -- 8.2.2.4 Vt and Ca2+ concatenation -- 8.2.3 Multi-label classification methods -- 8.2.3.1 Binary relevance -- 8.2.3.2 Classifier chains -- 8.2.3.3 Label Powerset -- 8.2.4 Model architectures -- 8.2.4.1 Gaussian Naive Bayes -- 8.2.4.2 Support Vector Classifier -- 8.2.4.3 XGBoost -- 8.2.4.4 Feed Forward Neural Network -- 8.2.4.5 Convolutional Neural Network -- 8.2.4.6 Recurrent Neural Network -- 8.2.5 Model selection and hyperparameter tuning -- 8.2.6 Scoring and metrics -- 8.2.6.1 Accuracy -- 8.2.6.2 Recall and precision -- 8.2.7 Explainable AI -- 8.2.7.1 LIME (Local Interpretable Model-Agnostic Explanations) -- 8.3 Results -- 8.4 Discussion -- 8.5 Conclusion -- References.
isbn 9783031051647
9783031051630
callnumber-first Q - Science
callnumber-subject QA - Mathematics
callnumber-label QA71-90
callnumber-sort QA 271 290
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6978014
illustrated Not Illustrated
oclc_num 1315573272
work_keys_str_mv AT mccabekimberlyj computationalphysiologysimulasummerschool2021studentreports
status_str n
ids_txt_mv (MiAaPQ)5006978014
(Au-PeEL)EBL6978014
(OCoLC)1315573272
carrierType_str_mv cr
hierarchy_parent_title Simula SpringerBriefs on Computing Series ; v.12
is_hierarchy_title Computational Physiology : Simula Summer School 2021 Student Reports.
container_title Simula SpringerBriefs on Computing Series ; v.12
marc_error Info : Unimarc and ISO-8859-1 translations identical, choosing ISO-8859-1. --- [ 856 : z ]
_version_ 1792331062805790720
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05294nam a22004093i 4500</leader><controlfield tag="001">5006978014</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073846.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2022 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031051647</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783031051630</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006978014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6978014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1315573272</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA71-90</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McCabe, Kimberly J.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational Physiology :</subfield><subfield code="b">Simula Summer School 2021 Student Reports.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">Ã2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (117 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Simula SpringerBriefs on Computing Series ;</subfield><subfield code="v">v.12</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgements -- Contents -- Chapter 1 A Pipeline for Automated Coordinate Assignment in Anatomically Accurate Biventricular Models -- 1.1 Introduction -- 1.2 Methods -- 1.2.1 Semi-Automated Surface Extraction -- Algorithm 1 -- 1.2.2 Biventricular Coordinate System -- 1.2.2.1 Creation of the Coordinate System Cobiveco -- 1.2.3 Mapping Vector Fields -- 1.3 Results -- 1.4 Conclusion -- 1.4.1 Limitations -- References -- Chapter 2 3D Simulations of Fetal and Maternal Ventricular Excitation for Investigating the Abdominal ECG -- 2.1 Introduction -- 2.2 Methods -- 2.2.1 Geometrical mesh construction -- 2.2.2 Electrophysiological modelling -- 2.2.3 Extracellular potential measurements -- 2.2.4 Fetal ECG extraction using signal processing methods -- 2.3 Results -- 2.4 Discussion -- 2.5 Conclusions -- References -- Chapter 3 Ordinary Differential Equation-based Modeling of Cells in Human Cartilage -- 3.1 Introduction -- 3.2 Methods -- 3.2.1 Mathematical modelling of ATP-sensitive K+ currents -- 3.2.2 Population of Models -- 3.3 Results -- 3.3.1 Validation -- 3.3.2 Results for the ATP-sensitive K+ currents -- 3.3.3 Populations of Models -- 3.4 Discussion and Conclusion -- References -- Chapter 4 Conduction Velocity in Cardiac Tissue as Function of Ion Channel Conductance and Distribution -- 4.1 Introduction -- 4.2 Models and methods -- 4.2.1 The monodomain model -- 4.2.2 The EMI model -- 4.3 Results -- 4.4 Discussion -- 4.4.1 Influence of ion channel conductance on CV -- 4.4.2 Influence of ion channel distribution -- 4.5 Conclusions -- References -- Chapter 5 Computational Prediction of Cardiac Electropharmacology - How Much Does the Model Matter? -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 Models of Cardiac Electrophysiology -- 5.2.2 Feature Extraction -- 5.2.3 Sensitivity Analysis and Translation -- 5.3 Results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3.1 Model Translation -- 5.3.2 Translation Discrepancies -- 5.4 Discussion -- 5.5 Conclusion -- References -- Chapter 6 A Computational Study of Flow Instabilities in Aneurysms -- 6.1 Introduction -- 6.2 Methods -- 6.2.1 Baseflow equations -- 6.2.2 Flow perturbations and instability -- 6.2.3 Discretization -- 6.2.4 Computational Methodology -- 6.3 Results -- 6.4 Discussion -- References -- Chapter 7 Investigating the Multiscale Impact of Deoxyadenosine Triphosphate (dATP) on Pulmonary Arterial Hypertension (PAH) Induced Heart Failure -- 7.1 Introduction -- 7.2 Methods -- 7.2.1 Cell Level Changes -- 7.2.1.1 The SERCA Pump and Calcium transients -- 7.2.1.2 Cross-bridge cycling kinetics -- 7.2.2 Organ Level Model -- 7.3 Results -- 7.4 Discussion and Conclusion -- 7.5 Acknowledgements -- 7.6 Supplementary Information -- References -- Chapter 8 Identifying Ionic Channel Block in a Virtual Cardiomyocyte Population Using Machine Learning Classifiers -- 8.1 Introduction -- 8.2 Methods -- 8.2.1 Data -- 8.2.2 Preprocessing -- 8.2.2.1 Noise -- 8.2.2.2 Normalizing -- 8.2.2.3 Subtract drug signals from control signals -- 8.2.2.4 Vt and Ca2+ concatenation -- 8.2.3 Multi-label classification methods -- 8.2.3.1 Binary relevance -- 8.2.3.2 Classifier chains -- 8.2.3.3 Label Powerset -- 8.2.4 Model architectures -- 8.2.4.1 Gaussian Naive Bayes -- 8.2.4.2 Support Vector Classifier -- 8.2.4.3 XGBoost -- 8.2.4.4 Feed Forward Neural Network -- 8.2.4.5 Convolutional Neural Network -- 8.2.4.6 Recurrent Neural Network -- 8.2.5 Model selection and hyperparameter tuning -- 8.2.6 Scoring and metrics -- 8.2.6.1 Accuracy -- 8.2.6.2 Recall and precision -- 8.2.7 Explainable AI -- 8.2.7.1 LIME (Local Interpretable Model-Agnostic Explanations) -- 8.3 Results -- 8.4 Discussion -- 8.5 Conclusion -- References.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">McCabe, Kimberly J.</subfield><subfield code="t">Computational Physiology</subfield><subfield code="d">Cham : Springer International Publishing AG,c2022</subfield><subfield code="z">9783031051630</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Simula SpringerBriefs on Computing Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6978014</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>