Radar for Fully Autonomous Driving.

Saved in:
Bibliographic Details
:
Place / Publishing House:Norwood : : Artech House,, 2022.
©2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (339 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 09317nam a22004093i 4500
001 5006965415
003 MiAaPQ
005 20240229073846.0
006 m o d |
007 cr cnu||||||||
008 240229s2022 xx o ||||0 eng d
020 |a 9781630818975  |q (electronic bk.) 
020 |z 9781630818968 
035 |a (MiAaPQ)5006965415 
035 |a (Au-PeEL)EBL6965415 
035 |a (OCoLC)1321796537 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
082 0 |a 629.2046 
100 1 |a Markel, Matt. 
245 1 0 |a Radar for Fully Autonomous Driving. 
250 |a 1st ed. 
264 1 |a Norwood :  |b Artech House,  |c 2022. 
264 4 |c ©2022. 
300 |a 1 online resource (339 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Radar for Fully Autonomous Driving -- Contents -- Part I: Radar Technologies for Autonomous Vehicles -- Chapter 1 Modern Radar Sensors in Advanced Automotive Architectures -- 1.1 Inspiration for More Advanced Systems -- 1.1.1 Traffic Density and Fatal Accident Rate -- 1.1.2 Human Factor -- 1.1.3 Autonomous Driving Levels -- 1.2 The Evolving Automotive Radar Landscape -- 1.3 Fast Chirp Sequence Radar Sensing -- 1.4 RFCMOS Car Radar Transceiver -- 1.5 Elements of a Radar Module -- 1.6 Angular Resolution Increase: MIMO Example and Cascaded Application -- 1.7 Vehicle Network and Compute Considerations -- 1.7.1 Vehicle Network Architecture Evolution -- 1.7.2 Distributed Versus Centralized Processing -- 1.7.3 Conclusion -- 1.8 Summary -- 1.9 Acknowledgments -- References -- Chapter 2 Design Considerations for Automotive Radar -- 2.1 Radar Requirements -- 2.2 The Spectrum for Automotive Radar -- 2.3 Range (Distance) Required for Automotive Radar -- 2.4 Automotive Radar Installation -- 2.5 Automotive Radar Considerations for Scanning the FOV -- 2.6 Frequency Modulation Waveforms and the Radar Data Cube -- 2.7 Outputs from Automotive Radar -- References -- Chapter 3 Digital Code Modulation -- 3.1 Introduction -- 3.2 FCM Versus DCM Architecture -- 3.3 Basics of DCM Radar -- 3.3.1 Range Processing -- 3.3.2 Velocity Processing -- 3.3.3 Angle Processing -- 3.4 DCM Radar Attributes -- 3.4.1 High Contrast Distance: Matched Filter -- 3.4.2 High Contrast Resolution -- 3.4.3 CDM MIMO (Higher Power on Target) -- 3.4.4 Interference Robustness and Interference Mitigation -- 3.4.5 Cascading: Coherent and Quasi-coherent Sensors and Networks -- 3.4.6 Code Design -- 3.5 DCM Radar Implementation -- References -- Chapter 4 Automotive MIMO Radar -- 4.1 Virtual Array Synthesis via MIMO Radar -- 4.2  Waveform Orthogonality Strategies in Automotive MIMO Radar. 
505 8 |a 4.2.1 Waveform Orthogonality via TDM -- 4.2.2 Waveform Orthogonality via DDM -- 4.2.3 Waveform Orthogonality via FDM -- 4.3 Angle Finding in Automotive MIMO Radar -- 4.3.1 High Resolution Angle Finding with ULA -- 4.3.2 High Resolution Angle Finding with SLA -- 4.4 High Resolution Imaging Radar for Autonomous Driving -- 4.4.1 Cascade of Multiple Radar Transceivers -- 4.4.2 Examples of Cascaded Imaging Radars -- 4.4.3 Design Challenges of Imaging Radar -- 4.5 Challenges in Automotive MIMO Radar -- 4.5.1 Angle Finding in the Presence of Multipath Reflections -- 4.5.2 Waveform Orthogonality in Automotive MIMO Radar -- 4.5.3 Efficient, High Resolution Angle Finding Algorithms Are Needed -- References -- Chapter 5 Synthetic Aperture Radar for Automotive Applications -- 5.1 Introduction -- 5.1.1 Historical Background -- 5.1.2 Comparison to Traditional Radar Systems -- 5.1.3 SAR and Point Cloud Imaging Performance -- 5.1.4 Applications for Automotive Use -- 5.2 Mathematical Foundation -- 5.2.1 Key Assumptions -- 5.2.2 Signal Model -- 5.2.3 Slow Time -- 5.3 Building an Automotive SAR -- 5.3.1 Measuring Ego-Motion -- 5.3.2 SAR Image Formation -- 5.3.3 Coexistence with Point Cloud Pipeline -- 5.3.4 Elevation Information -- 5.4 Future Directions -- 5.4.1 Forward-Facing SAR -- 5.4.2 SAR for Moving Objects -- 5.4.3 Gapped SAR -- 5.5 Conclusion -- References -- Chapter 6 Radar Transceiver Technologies -- 6.1 Background and Introduction to Automotive Radar -- 6.2 Block Diagram Overview of an FMCW Radar Transceiver -- 6.3 Challenges with Deeply Scaled CMOS -- 6.4 Active Devices in CMOS -- 6.5 Passives in CMOS -- 6.6 Circuit Architectures Suitable for Advanced CMOS -- 6.6.1 The Transmit Power Amplifier -- 6.6.2 The TX Phase Shifter -- 6.7 The LO/FMCW Chirp Generator -- 6.8 The Receiver Signal Chain -- 6.8.1 RX Frontend -- 6.8.2 Radar RX Baseband -- 6.9 Summary. 
505 8 |a References -- Part 2: Challenges and Solutions for the Automotive Environment -- Chapter 7 Radar Challenges from the Automotive Scene -- 7.1 Introduction -- 7.1.1 Range Swath -- 7.1.2 Imaging Dense Clutter -- 7.1.3 Simultaneous Transmit and Receive -- 7.2 Scene Dynamic Range -- 7.3 Ground Bounce (Unresolved Reflections) -- 7.4 Multipath (Resolved Reflections) -- References -- Chapter 8 Radar Interference -- 8.1 Introduction -- 8.2 Motivation and Definitions -- 8.3 Impacts and Manifestation -- 8.3.1 LFM/FMCW -- 8.3.2 PMCW Radar and Mixed Waveforms -- 8.4 RFI Mitigations -- 8.4.1 Mitigations Local to the Radar -- 8.4.2 Global Mitigations: Noncooperative Countermeasures -- 8.4.3 Global Mitigations: Cooperative Countermeasures -- 8.4.4 Global Mitigations: Regulations -- 8.5 Recommendations for the Future -- 8.5.1 Use Less Energy and Power -- 8.5.2 Report Confidence -- 8.5.3 Create a Useful Taxonomy for RFI Mitigation -- References -- Chapter 9 The Impacts of Water (Weather) on Automotive Radar -- 9.1 Introduction -- 9.2 System Losses -- 9.2.1 Transmission Loss -- 9.2.2 Target Loss -- 9.2.3 Radome Loss -- 9.3 Array Performance -- 9.4 Backscattering Phenomenology -- 9.4.1 Rainfall Backscatter -- 9.4.2 Road Spray -- 9.5 Potential Mitigations -- References -- Part 3: Integration and System Considerations -- Chapter 10 Safety Considerations for Radar in Fully Autonomous Vehicles -- 10.1 Introduction -- 10.2 What Is Safety? -- 10.3 Safety Standards -- 10.3.1 ISO 26262 and ISO 21448 -- 10.3.2 Relationship to Existing Standards and Processes -- 10.4 Lessons from Industry -- 10.4.1 Emphasize Understanding over Following Checklists -- 10.4.2 Embrace Systems Engineering -- 10.4.3 Address Safety in the Most Appropriate Place -- 10.4.4 Improve Supplier/Customer Engagement -- 10.4.5 Recognize the Criticality of a High Quality Safety Manual. 
505 8 |a 10.4.6 Beware the Many Pitfalls of Safety Analysis -- 10.4.7 Applying Safety to Emerging or Complex Technologies -- 10.5 Safety Concepts for Level 4 ADS and Implications for Radar -- 10.5.1 Safety Considerations on Multiple Sensor Modalities -- 10.5.2 Safety Considerations on Radar Data -- 10.5.3 Radar FuSa and SOTIF Roots Causes and Mitigations -- 10.5.4 Safety Considerations Due to Available Radar Technology -- 10.6 Safety Considerations for Verification and Validation -- 10.7 Conclusion -- References -- Chapter 11 Testing Automotive Radars -- 11.1 Introduction: Why Is Testing Necessary? -- 11.1.1 Verification and Validation of System Performance -- 11.1.2 Conformance to Legal Regulations and Industrial Standards -- 11.1.3 Safety Performance Assessment -- 11.2 Measurable Parameters: From Sensor Level to Vehicle Integration -- 11.2.1 Transmitter Tests -- 11.2.2 Receiver Test -- 11.2.3 Antenna and Radome Test -- 11.2.4 Performance and Functional Tests -- 11.2.5 Integration Testing -- 11.3 Test Equipment -- 11.3.1 General Test Equipment -- 11.3.2 Radar Echo Generators -- 11.3.3 Measurement Antennas -- 11.3.4 Anochic Chambers -- 11.3.5 Positioners -- 11.4 Example Test Setups -- 11.4.1 Transmitter Test Setup -- 11.4.2 Setup for Sensor Calibration and Performance Tests -- 11.4.3 Setups for EMC and OOB Testing -- 11.4.4 Simulating Interference from Other Automotive Radar Transmitters -- 11.4.5 Exemplary Test Scenario -- 11.4.6 ADAS Integration Test Bed -- 11.4.7 ViL Test -- References -- List of Acronyms -- About the Editor -- About the Authors. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Markel, Matt  |t Radar for Fully Autonomous Driving  |d Norwood : Artech House,c2022  |z 9781630818968 
797 2 |a ProQuest (Firm) 
856 4 0 |u https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6965415  |z Click to View