The Fiber-Optic Gyroscope, Third Edition.

Saved in:
Bibliographic Details
:
Place / Publishing House:Norwood : : Artech House,, 2022.
©2022.
Year of Publication:2022
Edition:3rd ed.
Language:English
Online Access:
Physical Description:1 online resource (509 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • The Fiber-Optic Gyroscope, Third Edition
  • Contents
  • Foreword
  • Preface to the First Edition
  • Preface to the Second Edition
  • Preface to the Third Edition
  • Chapter 1 Introduction
  • References
  • Chapter 2 Principle of the Fiber-Optic Gyroscope
  • 2.1 Sagnac-Laue Effect
  • 2.1.1 A History of Optics from Aether to Relativity
  • 2.1.2 Sagnac-Laue Effect in a Vacuum
  • 2.1.3 Sagnac-Laue Effect in a Medium
  • 2.2 Active and Passive Ring Resonators
  • 2.2.1 Ring-Laser Gyroscope
  • 2.2.2 Resonant Fiber-Optic Gyroscope
  • 2.3 Passive Fiber-Ring Interferometer
  • 2.3.1 Principle of the Interferometric Fiber-Optic Gyroscope
  • 2.3.2 Theoretical Sensitivity of the I-FOG
  • 2.3.3 Noise, Drift, and Scale Factor
  • 2.3.4 ARW Versus Root PSD
  • 2.3.5 Evaluation of Noise and Drift by Allan Variance (or Allan Deviation)
  • 2.3.6 Allan Variance/Deviation Versus Standard Variance/Deviation
  • 2.3.7 Bandwidth
  • 2.3.8 Various Functions of a Gyro: Attitude Measurement, Gyro Compassing,and Inertial Navigation
  • References
  • Chapter 3 Reciprocity of a Fiber Ring Interferometer
  • 3.1 Principle of Reciprocity
  • 3.1.1 Single-Mode Reciprocity of Wave Propagation
  • 3.1.2 Reciprocal Behavior of a Beam Splitter
  • 3.2 Minimum Configuration of a Ring Fiber Interfero
  • 3.2.1 Reciprocal Configuration
  • 3.2.2 Reciprocal Biasing Modulation-Demodulation
  • 3.2.3 Proper (or Eigen) Frequency
  • 3.3 Reciprocity with All-Guided Schemes
  • 3.3.1 Evanescent-Field Coupler (or X-Coupler or Four-Port Coupler)
  • 3.3.2 Y-Junction
  • 3.3.3 All-Fiber Approach
  • 3.3.4 Hybrid Architectures with Integrated Optics:Y-Coupler Configuration
  • 3.4 Problem of Polarization Reciprocity
  • 3.4.1 Rejection Requirement with Ordinary Single-Mode Fiber
  • 3.4.2 Use of Polarization-Maintaining (PM) Fiber
  • 3.4.3 Use of Depolarizer
  • 3.4.4 Use of an Unpolarized Source
  • References.
  • Chapter 4 Backreflection and Backscattering
  • 4.1 Problem of Backreflection
  • 4.1.1 Reduction of Backreflection with Slant Interfaces
  • 4.1.2 Influence of Source Coherence
  • 4.2 Problem of Backscattering
  • 4.2.1 Coherent Backscattering
  • 4.2.2 Use of a Broadband Source
  • 4.2.3 Evaluation of the Residual Rayleigh Backscattering Noise
  • References
  • Chapter 5 Analysis of PolarizationNonreciprocities with BroadbandSource and High-BirefringencePolarization-Maintaining Fiber
  • 5.1 Depolarization Effect in High-BirefringencePolarization-Maintaining Fibers
  • 5.2 Analysis of Polarization Nonreciprocities in a Fiber GyroscopeUsing an All-Polarization-Maintaining Waveguide Configuration
  • 5.2.1 Intensity-Type Effects
  • 5.2.2 Comment About Length of Depolarization Ld Versus Length ofPolarization Correlation Lpc
  • 5.2.3 Amplitude-Type Effects
  • 5.3 Use of a Depolarizer
  • 5.4 Testing with Optical Coherence Domain Polarimetry (OCDP), orToday, Distributed Polarization Crosstalk Analysis (DPXA)
  • 5.4.1 OCDP, or DPXA, Based on Path-Matched White-Light Interferometry
  • 5.4.2 OCDP/DPXA Using Optical Spectrum Analysis
  • References
  • Chapter 6 Time-Transience Related Nonreciprocal Effects
  • 6.1 Effect of Temperature Transience: The Shupe Effect
  • 6.2 Symmetrical Windings
  • 6.3 Strain-Induced T-Dot Effect
  • 6.4 Basics of Heat Diffusion and Temporal Signature of the Shupe and T-Dot Effects
  • 6.5 Case of a Sinusoidal Temperature Variation
  • 6.6 Simple Model of Thermally-Induced Differential Strainsin a Self-Standing Coil
  • 6.6.1 Reminders About the Theory of Elasticity
  • 6.6.2 Effect of the Fiber Coating
  • 6.6.3 Simple Model of a Free-Standing Coil
  • 6.7 Simple Viewing of Symmetrical Windings with the Thermally-Induced Differential Strains
  • 6.8 Orthocyclic Winding for Hexagonal Close Packing
  • 6.9 Effect of Acoustic Noise and Vibration.
  • References
  • Chapter 7 Truly Nonreciprocal Effects
  • 7.1 Magneto-Optic Faraday Effect
  • 7.2 Axial Magneto-Optic Effect
  • 7.3 Nonlinear Kerr Effect
  • References
  • Chapter 8 Scale Factor Linearity and Accuracy
  • 8.1 Problem of Scale Factor Linearity and Accuracy
  • 8.2 Closed-Loop Operation Methods to Linearize Scale Factor
  • 8.2.1 Use of a Frequency Shift
  • 8.2.2 Use of an Analog Phase Ramp (or Serrodyne Modulation)
  • 8.2.3 Use of a Digital Phase Ramp
  • 8.2.4 All-Digital Closed-Loop Processing Method
  • 8.2.5 Control of the Gain of the Modulation Chain with "Four-State"Modulation
  • 8.2.6 Potential Spurious Lock-In (or Deadband) Effect
  • 8.3 Scale Factor Accuracy
  • 8.3.1 Problem of Scale Factor Accuracy
  • 8.3.2 Wavelength Dependence of an Interferometer Response with a Broadband Source
  • 8.3.3 Effect of Phase Modulation
  • 8.3.4 Wavelength Control Schemes
  • 8.3.5 Mean Wavelength Change with a Parasitic Interferometeror Polarimeter
  • References
  • Chapter 9 Recapitulation of the Optimal Operating Conditions and Technologies of the I-FOG
  • 9.1 Optimal Operating Conditions
  • 9.2 Broadband Source
  • 9.2.1 Superluminescent Diode
  • 9.2.2 Rare-Earth Doped Fiber ASE Sources
  • 9.2.3 Excess RIN Compensation Techniques
  • 9.3 Sensing Coil
  • 9.4 "Heart" of the Interferometer
  • 9.5 Detector and Processing Electronics
  • 9.6 Summary of the Various Noises
  • 9.7 Thermal Phase Noise (Optical Nyquist Noise)
  • References
  • Chapter 10 Alternative Approaches for the I-FOG
  • 10.1 Alternative Optical Configurations
  • 10.1.1 Use of a [3 × 3] Coupler
  • 10.1.2 Use of a Quarter-Wave Plate
  • 10.1.3 Use of a Laser Diode
  • 10.2 Alternative Signal Processing Schemes
  • 10.2.1 Open-Loop Scheme with Use of Multiple Harmonics
  • 10.2.2 Second Harmonic Feedback
  • 10.2.3 Gated Phase Modulation Feedback
  • 10.2.4 Heterodyne and Pseudo-Heterodyne Schemes.
  • 10.2.5 Beat Detection with Phase Ramp Feedback
  • 10.2.6 Dual Phase Ramp Feedback
  • 10.3 Extended Dynamic Range with Multiple Wavelength Source
  • References
  • Chapter 11 Resonant Fiber-Optic Gyroscope
  • 11.1 Principle of Operation of an All-Fiber Ring Cavity
  • 11.2 Signal Processing Method
  • 11.3 Reciprocity of a Ring Fiber Cavity
  • 11.3.1 Introduction
  • 11.3.2 Basic Reciprocity Within the Ring Resonator
  • 11.3.3 Excitation and Detection of Resonances in a Ring Resonator
  • 11.4 Other Parasitic Effects in the R-FOG
  • Acknowledgment
  • References
  • Chapter 12 Conclusions
  • 12.1 The State of Development and Expectations in 1993
  • 12.2 The State of the Art, Two Decades Later, in 2014, for the Second Edition
  • 12.2.1 FOG Versus RLG
  • 12.2.2 FOG Manufacturers, in 2014
  • 12.3 The State of the Art, Today, in 2021
  • 12.4 Trends for the Future and Concluding Remarks
  • References
  • Appendix A Fundamentals of Opticsfor the Fiber Gyroscope
  • A.1 Basic Parameters of an Optical Wave: Wavelength,Frequency, and Power
  • A.2 Spontaneous Emission, Stimulated Emission, and Related Noises
  • A.2.1 Fundamental Photon Noise
  • A.2.2 Spontaneous Emission and Excess Relative Intensity Noise
  • A.2.3 Resonant Stimulated Emission in a Laser Source
  • A.2.4 Amplified Spontaneous Emission
  • A.3 Propagation Equation in a Vacuum
  • A.4 State of Polarization of an Optical Wave
  • A.5 Propagation in a Dielectric Medium
  • A.5.1 Index of Refraction
  • A.5.2 Chromatic Dispersion, Group Velocity, and Group Velocity Dispersion
  • A.5.3 E and B, or E and H?
  • A.6 Dielectric Interface
  • A.6.1 Refraction, Partial Reflection, and Total Internal Reflection
  • A.6.2 Dielectric Planar Waveguidance
  • A.7 Geometrical Optics
  • A.7.1 Rays and Phase Front
  • A.7.2 Plane Mirror and Beam Splitte
  • A.7.3 Lenses
  • A.8 Interferences.
  • A.8.1 Principle of Two-Wave Interferometry
  • A.8.2 Most Common Two-Wave Interferometers:Michelson and Mach-Zehnder Interferometers, Young Double-Slit
  • A.8.3 Channeled Spectral Response of a Two-Wave Interferometer
  • A.9 Multiple-Wave Interferences
  • A.9.1 Fabry-Perot Interferometer
  • A.9.2 Ring Resonant Cavi
  • A.9.3 Multilayer Dielectric Mirror and Bragg Reflector
  • A.9.4 Bulk-Optic Diffraction Grating
  • A.10 Diffraction
  • A.10.1 Fresnel Diffraction and Fraunhofer Diffraction
  • A.10.2 Knife-Edge Fresnel Diffraction
  • A.11 Gaussian Beam
  • A.12 Coherence
  • A.12.1 Basics of Coherence
  • A.12.2 Mathematical Derivation of Temporal Coherence
  • A.12.3 Concept of Wave Train
  • A.12.4 Case of an Asymmetrical Spectrum
  • A.12.5 Case of Propagation in a Dispersive Medium
  • A.13 Birefringence
  • A.13.1 Birefringence Index Difference
  • A.13.2 Change of Polarization with Birefringence
  • A.13.3 Interference with Birefringence
  • A.14 Optical Spectrum Analysis
  • Bibliography
  • Appendix B Fundamentals of Fiber-Optics for the Fiber-Gyroscope
  • B.1 Main Characteristics of a Single-Mode Optical Fiber
  • B.1.1 Attenuation of a Silica Fiber
  • B.1.2 Gaussian Profile of the Fundamental Mode
  • B.1.3 Beat Length and h Parameter of a PM Fiber
  • B.1.4 Protective Coating
  • B.1.5 Temperature Dependence of Propagation in a PM Fiber
  • B.2 Discrete Modal Guidance in a Step-Index Fiber
  • B.3 Guidance in a Single-Mode Fiber
  • B.3.1 Amplitude Distribution of the Fundamental LP01 Mode
  • B.3.2 Effective Index neff and Phase Velocity vϕ of the Fundamental LP01 Mode
  • B.3.3 Group Index ng of the Fundamental LP01 Mode
  • B.3.4 Case of a Parabolic Index Profile
  • B.3.5 Modes of a Few-Mode Fiber
  • B.4 Coupling in a Single-Mode Fiber and Its Loss Mechanisms
  • B.4.1 Free-Space Coupling
  • B.4.2 Misalignment Coupling Losses.
  • B.4.3 Mode-Diameter Mismatch Loss of LP01 Mode.