Data Science-Based Full-Lifespan Management of Lithium-Ion Battery : : Manufacturing, Operation and Reutilization.

Saved in:
Bibliographic Details
Superior document:Green Energy and Technology Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2022.
©2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Series:Green Energy and Technology Series
Online Access:
Physical Description:1 online resource (277 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Foreword by Prof. Qing-Long Han
  • Foreword by Prof. Jinyue Yan
  • Preface
  • Acknowledgments
  • Contents
  • About the Authors
  • Abbreviations
  • 1 Introduction to Battery Full-Lifespan Management
  • 1.1 Background and Motivation
  • 1.1.1 Energy Storage Market
  • 1.1.2 Li-Ion Battery Role
  • 1.2 Li-Ion Battery and Its Management
  • 1.2.1 Li-Ion Battery
  • 1.2.2 Demands for Battery Management
  • 1.3 Data Science Technologies
  • 1.3.1 What is Data Science
  • 1.3.2 Type of Data Science Technologies
  • 1.3.3 Performance Indicators
  • 1.4 Summary
  • References
  • 2 Key Stages for Battery Full-Lifespan Management
  • 2.1 Full-Lifespan of Li-Ion Battery
  • 2.2 Li-Ion Battery Manufacturing
  • 2.2.1 Battery Manufacturing Fundamental
  • 2.2.2 Identifying Manufacturing Parameters and Variables
  • 2.3 Li-Ion Battery Operation
  • 2.3.1 Battery Operation Fundamental
  • 2.3.2 Key Tasks of Battery Operation Management
  • 2.4 Li-Ion Battery Reutilization
  • 2.5 Summary
  • References
  • 3 Data Science-Based Battery Manufacturing Management
  • 3.1 Overview of Battery Manufacturing
  • 3.2 Data Science Application of Battery Manufacturing Management
  • 3.2.1 Data Science Framework for Battery Manufacturing Management
  • 3.2.2 Machine Learning Tool
  • 3.3 Battery Electrode Manufacturing
  • 3.3.1 Overview of Battery Electrode Manufacturing
  • 3.3.2 Case 1: Battery Electrode Mass Loading Prediction with GPR
  • 3.3.3 Case 2: Battery Electrode Property Classification with RF
  • 3.4 Battery Cell Manufacturing
  • 3.4.1 Overview of Battery Cell Manufacturing
  • 3.4.2 Case 1: Battery Cell Capacities Prediction with SVR
  • 3.4.3 Case 2: Battery Cell Capacity Classification with RUBoost
  • 3.5 Summary
  • References
  • 4 Data Science-Based Battery Operation Management I
  • 4.1 Battery Operation Modelling
  • 4.1.1 Battery Electrical Model
  • 4.1.2 Battery Thermal Model.
  • 4.1.3 Battery Coupled Model
  • 4.2 Battery State Estimation
  • 4.2.1 Battery SoC Estimation
  • 4.2.2 Battery SoP Estimation
  • 4.2.3 Battery SoH Estimation
  • 4.2.4 Joint State Estimation
  • 4.3 Summary
  • References
  • 5 Data Science-Based Battery Operation Management II
  • 5.1 Battery Ageing Prognostics
  • 5.1.1 Ageing Mechanism and Stress Factors
  • 5.1.2 Li-Ion Battery Lifetime Prediction with Data Science
  • 5.1.3 Case 1: Li-Ion Battery Cyclic Ageing Predictions with Modified GPR
  • 5.1.4 Case 2: Li-Ion Battery Lifetime Prediction with LSTM and GPR
  • 5.2 Battery Fault Diagnosis
  • 5.2.1 Overview of Data Science-Based Battery Fault Diagnosis Methods
  • 5.2.2 Case: ISC Fault Detection Based on SoC Correlation
  • 5.3 Battery Charging
  • 5.3.1 Battery Charging Objective
  • 5.3.2 Case 1: Li-Ion Battery Economic-Conscious Charging
  • 5.3.3 Case 2: Li-Ion Battery Pack Charging with Distributed Average Tracking
  • 5.4 Summary
  • References
  • 6 Data Science-Based Battery Reutilization Management
  • 6.1 Overview of Battery Echelon Utilization and Material Recycling
  • 6.1.1 Echelon Utilization
  • 6.1.2 Material Recycling
  • 6.2 Sorting of Retired Li-Ion Batteries Based on Neural Network
  • 6.2.1 Data Science-Based Sorting Criteria
  • 6.2.2 Case 1: Sorting Criteria Estimation Based on Charging Data
  • 6.2.3 Case 2: Sorting Criteria Estimation Based on EIS
  • 6.3 Regrouping Methods of Retired Li-Ion Batteries
  • 6.3.1 Overview of Regrouping Methods
  • 6.3.2 Case 1: Hard Clustering of Retired Li-Ion Batteries Using K-means
  • 6.3.3 Case 2: Soft Clustering of Retired Li-Ion Batteries Based on EIS
  • 6.4 Material Recycling Method of Spent Li-Ion Batteries
  • 6.4.1 Main Recycling Methods
  • 6.4.2 Case 1: Physical Recycling Technologies
  • 6.4.3 Case 2: Chemical Recycling Technologies
  • 6.5 Summary
  • References
  • 7 The Ways Ahead.
  • 7.1 Data Science-Based Battery Manufacturing
  • 7.1.1 Continuous Manufacturing Line
  • 7.1.2 Digital Manufacturing Line
  • 7.1.3 Advanced Sensing Methodology
  • 7.1.4 Improved Machine Learning
  • 7.2 Data Science-Based Battery Operation
  • 7.2.1 Operation Modelling and State Estimation
  • 7.2.2 Lifetime Prognostics
  • 7.2.3 Fault Diagnostics
  • 7.2.4 Battery Charging
  • 7.3 Data Science-Based Battery Reutilization
  • 7.4 Summary
  • References.