Multimedia Forensics.

Saved in:
Bibliographic Details
Superior document:Advances in Computer Vision and Pattern Recognition Series
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer,, 2022.
Ã2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Series:Advances in Computer Vision and Pattern Recognition Series
Online Access:
Physical Description:1 online resource (494 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006944947
ctrlnum (MiAaPQ)5006944947
(Au-PeEL)EBL6944947
(OCoLC)1308977816
collection bib_alma
record_format marc
spelling Sencar, Husrev Taha.
Multimedia Forensics.
1st ed.
Singapore : Springer, 2022.
Ã2022.
1 online resource (494 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Advances in Computer Vision and Pattern Recognition Series
Intro -- Preface -- Contents -- Symbols -- Notation -- Part I Present and Challenges -- 1 What's in This Book and Why? -- 1.1 Introduction -- 1.2 Overviews -- 2 Media Forensics in the Age of Disinformation -- 2.1 Media and the Human Experience -- 2.2 The Threat to Democracy -- 2.3 New Technologies, New Threats -- 2.3.1 End-to-End Trainable Speech Synthesis -- 2.3.2 GAN-Based Codecs for Still and Moving Pictures -- 2.3.3 Improvements in Image Manipulation -- 2.3.4 Trillion-Param Models -- 2.3.5 Lottery Tickets and Compression in Generative Models -- 2.4 New Developments in the Private Sector -- 2.4.1 Image and Video -- 2.4.2 Language Models -- 2.5 Threats in the Wild -- 2.5.1 User-Generated Manipulations -- 2.5.2 Corporate Manipulation Services -- 2.5.3 Nation State Manipulation Examples -- 2.5.4 Use of AI Techniques for Deception 2019-2020 -- 2.6 Threat Models -- 2.6.1 Carnegie Mellon BEND Framework -- 2.6.2 The ABC Framework -- 2.6.3 The AMITT Framework -- 2.6.4 The SCOTCH Framework -- 2.6.5 Deception Model Effects -- 2.6.6 4Ds -- 2.6.7 Advanced Persistent Manipulators -- 2.6.8 Scenarios for Financial Harm -- 2.7 Investments in Countering False Media -- 2.7.1 DARPA SEMAFOR -- 2.7.2 The Partnership on AI Steering Committee on Media Integrity Working Group -- 2.7.3 JPEG Committee -- 2.7.4 Content Authenticity Initiative (CAI) -- 2.7.5 Media Review -- 2.8 Excerpts on Susceptibility and Resilience to Media Manipulation -- 2.8.1 Susceptibility and Resilience -- 2.8.2 Case Studies: Threats and Actors -- 2.8.3 Dynamics of Exploitative Activities -- 2.8.4 Meta-Review -- 2.9 Conclusion -- References -- 3 Computational Imaging -- 3.1 Introduction to Computational Imaging -- 3.2 Automation of Geometrically Correct Synthetic Blur -- 3.2.1 Primary Cue: Image Noise -- 3.2.2 Additional Photo Forensic Cues -- 3.2.3 Focus Manipulation Detection.
3.2.4 Portrait Mode Detection Experiments -- 3.2.5 Conclusions on Detecting Geometrically Correct Synthetic Blur -- 3.3 Differences Between Optical and Digital Blur -- 3.3.1 Authentically Blurred Edges -- 3.3.2 Authentic Sharp Edge -- 3.3.3 Forged Blurred Edge -- 3.3.4 Forged Sharp Edge -- 3.3.5 Distinguishing IGHs of the Edge Types -- 3.3.6 Classifying IGHs -- 3.3.7 Splicing Logo Dataset -- 3.3.8 Experiments Differentiating Optical and Digital Blur -- 3.3.9 Conclusions: Differentiating Optical and Digital Blur -- 3.4 Additional Forensic Challenges from Computational Cameras -- References -- Part II Attribution -- 4 Sensor Fingerprints: Camera Identification and Beyond -- 4.1 Introduction -- 4.2 Sensor Noise Fingerprints -- 4.3 Camera Identification -- 4.4 Sensor Misalignment -- 4.5 Image Manipulation Localization -- 4.6 Counter-Forensics -- 4.7 Camera Fingerprints and Deep Learning -- 4.8 Public Datasets -- 4.9 Concluding Remarks -- References -- 5 Source Camera Attribution from Videos -- 5.1 Introduction -- 5.2 Challenges in Attributing Videos -- 5.3 Attribution of Downsized Media -- 5.3.1 The Effect of In-Camera Downsizing on PRNU -- 5.3.2 Media with Mismatching Resolutions -- 5.4 Mitigation of Video Coding Artifacts -- 5.4.1 Video Coding from Attribution Perspective -- 5.4.2 Compensation of Loop Filtering -- 5.4.3 Coping with Quantization-Related Weakening of PRNU -- 5.5 Tackling Digital Stabilization -- 5.5.1 Inverting Frame Level Stabilization Transformations -- 5.5.2 Inverting Spatially Variant Stabilization Transformations -- 5.6 Datasets -- 5.7 Conclusions and Outlook -- References -- 6 Camera Identification at Large Scale -- 6.1 Introduction -- 6.2 Naive Methods -- 6.2.1 Linear Search -- 6.2.2 Sequential Trimming -- 6.3 Efficient Pairwise Correlation -- 6.3.1 Search over Fingerprint Digests -- 6.3.2 Pixel Quantization -- 6.3.3 Downsizing.
6.3.4 Dimension Reduction Using PCA and LDA -- 6.3.5 PRNU Compression via Random Projection -- 6.3.6 Preprocessing, Quantization, Coding -- 6.4 Decreasing the Number of Comparisons -- 6.4.1 Clustering by Cameras -- 6.4.2 Composite Fingerprints -- 6.5 Hybrid Methods -- 6.5.1 Search over Composite-Digest Search Tree -- 6.5.2 Search over Full Digest Search Tree -- 6.6 Conclusion -- References -- 7 Source Camera Model Identification -- 7.1 Introduction -- 7.1.1 Image Acquisition Pipeline -- 7.1.2 Problem Formulation -- 7.2 Model-Based Approaches -- 7.2.1 Color Filter Array (CFA) -- 7.2.2 Lens Effects -- 7.2.3 Other Processing and Defects -- 7.3 Data-Driven Approaches -- 7.3.1 Hand-Crafted Features -- 7.3.2 Learned Features -- 7.4 Datasets and Benchmarks -- 7.4.1 Template Dataset -- 7.4.2 State-of-the-art Datasets -- 7.4.3 Benchmark Protocol -- 7.5 Case Studies -- 7.5.1 Experimental Setup -- 7.5.2 Comparison of Closed-Set Methods -- 7.5.3 Comparison of Open-Set Methods -- 7.6 Conclusions and Outlook -- References -- 8 GAN Fingerprints in Face Image Synthesis -- 8.1 Introduction -- 8.2 Related Work -- 8.2.1 Generative Adversarial Networks -- 8.2.2 GAN Detection Techniques -- 8.3 GAN Fingerprint Removal: GANprintR -- 8.4 Databases -- 8.4.1 Real Face Images -- 8.4.2 Synthetic Face Images -- 8.5 Experimental Setup -- 8.5.1 Pre-processing -- 8.5.2 Facial Manipulation Detection Systems -- 8.5.3 Protocol -- 8.6 Experimental Results -- 8.6.1 Controlled Scenarios -- 8.6.2 In-the-Wild Scenarios -- 8.6.3 GAN-Fingerprint Removal -- 8.6.4 Impact of GANprintR on Other Fake Detectors -- 8.7 Conclusions and Outlook -- References -- Part III Integrity and Authenticity -- 9 Physical Integrity -- 9.1 Introduction -- 9.1.1 Journalistic Fact Checking -- 9.1.2 Physics-Based Methods in Multimedia Forensics -- 9.1.3 Outline of This Chapter.
9.2 Physics-Based Models for Forensic Analysis -- 9.2.1 Geometry and Optics -- 9.2.2 Photometry and Reflectance -- 9.3 Algorithms for Physics-Based Forensic Analysis -- 9.3.1 Principal Points and Homographies -- 9.3.2 Photometric Methods -- 9.3.3 Point Light Sources and Line Constraints in the Projective Space -- 9.4 Discussion and Outlook -- 9.5 Picture Credits -- References -- 10 Power Signature for Multimedia Forensics -- 10.1 Electric Network Frequency (ENF): An Environmental Signature for Multimedia Recordings -- 10.2 Technical Foundations of ENF-Based Forensics -- 10.2.1 Reference Signal Acquisition -- 10.2.2 ENF Signal Estimation -- 10.2.3 Higher Order Harmonics for ENF Estimation -- 10.3 ENF Characteristics and Embedding Conditions -- 10.3.1 Establishing Presence of ENF Traces -- 10.3.2 Modeling ENF Behavior -- 10.4 ENF Traces in the Visual Track -- 10.4.1 Mechanism of ENF Embedding in Videos and Images -- 10.4.2 ENF Extraction from the Visual Track -- 10.4.3 ENF Extraction from a Single Image -- 10.5 Key Applications in Forensics and Security -- 10.5.1 Joint Time-Location Authentication -- 10.5.2 Integrity Authentication -- 10.5.3 ENF-Based Localization -- 10.5.4 ENF-Based Camera Forensics -- 10.6 Anti-Forensics and Countermeasures -- 10.6.1 Anti-Forensics and Detection of Anti-Forensics -- 10.6.2 Game-Theoretic Analysis on ENF-Based Forensics -- 10.7 Applications Beyond Forensics and Security -- 10.7.1 Multimedia Synchronization -- 10.7.2 Time-Stamping Historical Recordings -- 10.7.3 Audio Restoration -- 10.8 Conclusions and Outlook -- References -- 11 Data-Driven Digital Integrity Verification -- 11.1 Introduction -- 11.2 Forensics Clues -- 11.2.1 Camera-Based Artifacts -- 11.2.2 JPEG Artifacts -- 11.2.3 Editing Artifacts -- 11.3 Localization Versus Detection -- 11.3.1 Patch-Based Localization -- 11.3.2 Image-Based Localization.
11.3.3 Detection -- 11.4 Architectural Solutions -- 11.4.1 Constrained Networks -- 11.4.2 Two-Branch Networks -- 11.4.3 Fully Convolutional Networks -- 11.4.4 Siamese Networks -- 11.5 Datasets -- 11.6 Major Challenges -- 11.7 Conclusions and Future Directions -- References -- 12 DeepFake Detection -- 12.1 Introduction -- 12.2 DeepFake Video Generation -- 12.3 Current DeepFake Detection Methods -- 12.3.1 General Principles -- 12.3.2 Categorization Based on Methodology -- 12.3.3 Categorization Based on Input Types -- 12.3.4 Categorization Based on Output Types -- 12.3.5 The DeepFake-o-Meter Platform -- 12.3.6 Datasets -- 12.3.7 Challenges -- 12.4 Future Directions -- 12.5 Conclusion and Outlook -- References -- 13 Video Frame Deletion and Duplication -- 13.1 Introduction -- 13.2 Related Work -- 13.2.1 Frame Deletion Detection -- 13.2.2 Frame Duplication Detection -- 13.3 Frame Deletion Detection -- 13.3.1 Baseline Approaches -- 13.3.2 C3D Network for Frame Deletion Detection -- 13.3.3 Experimental Result -- 13.4 Frame Duplication Detection -- 13.4.1 Coarse-Level Search for Duplicated Frame Sequences -- 13.4.2 Fine-Level Search for Duplicated Frames -- 13.4.3 Inconsistency Detector for Duplication Localization -- 13.4.4 Experimental Results -- 13.5 Conclusions and Discussion -- References -- 14 Integrity Verification Through File Container Analysis -- 14.1 Introduction -- 14.1.1 Main Image File Format Specifications -- 14.1.2 Main Video File Format Specifications -- 14.2 Analysis of Image File Formats -- 14.2.1 Analysis of JPEG Tables and Image Resolution -- 14.2.2 Analysis of Exif Metadata Parameters -- 14.2.3 Analysis of the JPEG File Format -- 14.2.4 Automatic Analysis of JPEG Header Information -- 14.2.5 Methods for the Identification of Social Networks -- 14.3 Analysis of Video File Formats -- 14.3.1 Analysis of the Video File Structure.
14.3.2 Automated Analysis of mp4-like Videos.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Verdoliva, Luisa.
Memon, Nasir.
Print version: Sencar, Husrev Taha Multimedia Forensics Singapore : Springer,c2022 9789811676208
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6944947 Click to View
language English
format eBook
author Sencar, Husrev Taha.
spellingShingle Sencar, Husrev Taha.
Multimedia Forensics.
Advances in Computer Vision and Pattern Recognition Series
Intro -- Preface -- Contents -- Symbols -- Notation -- Part I Present and Challenges -- 1 What's in This Book and Why? -- 1.1 Introduction -- 1.2 Overviews -- 2 Media Forensics in the Age of Disinformation -- 2.1 Media and the Human Experience -- 2.2 The Threat to Democracy -- 2.3 New Technologies, New Threats -- 2.3.1 End-to-End Trainable Speech Synthesis -- 2.3.2 GAN-Based Codecs for Still and Moving Pictures -- 2.3.3 Improvements in Image Manipulation -- 2.3.4 Trillion-Param Models -- 2.3.5 Lottery Tickets and Compression in Generative Models -- 2.4 New Developments in the Private Sector -- 2.4.1 Image and Video -- 2.4.2 Language Models -- 2.5 Threats in the Wild -- 2.5.1 User-Generated Manipulations -- 2.5.2 Corporate Manipulation Services -- 2.5.3 Nation State Manipulation Examples -- 2.5.4 Use of AI Techniques for Deception 2019-2020 -- 2.6 Threat Models -- 2.6.1 Carnegie Mellon BEND Framework -- 2.6.2 The ABC Framework -- 2.6.3 The AMITT Framework -- 2.6.4 The SCOTCH Framework -- 2.6.5 Deception Model Effects -- 2.6.6 4Ds -- 2.6.7 Advanced Persistent Manipulators -- 2.6.8 Scenarios for Financial Harm -- 2.7 Investments in Countering False Media -- 2.7.1 DARPA SEMAFOR -- 2.7.2 The Partnership on AI Steering Committee on Media Integrity Working Group -- 2.7.3 JPEG Committee -- 2.7.4 Content Authenticity Initiative (CAI) -- 2.7.5 Media Review -- 2.8 Excerpts on Susceptibility and Resilience to Media Manipulation -- 2.8.1 Susceptibility and Resilience -- 2.8.2 Case Studies: Threats and Actors -- 2.8.3 Dynamics of Exploitative Activities -- 2.8.4 Meta-Review -- 2.9 Conclusion -- References -- 3 Computational Imaging -- 3.1 Introduction to Computational Imaging -- 3.2 Automation of Geometrically Correct Synthetic Blur -- 3.2.1 Primary Cue: Image Noise -- 3.2.2 Additional Photo Forensic Cues -- 3.2.3 Focus Manipulation Detection.
3.2.4 Portrait Mode Detection Experiments -- 3.2.5 Conclusions on Detecting Geometrically Correct Synthetic Blur -- 3.3 Differences Between Optical and Digital Blur -- 3.3.1 Authentically Blurred Edges -- 3.3.2 Authentic Sharp Edge -- 3.3.3 Forged Blurred Edge -- 3.3.4 Forged Sharp Edge -- 3.3.5 Distinguishing IGHs of the Edge Types -- 3.3.6 Classifying IGHs -- 3.3.7 Splicing Logo Dataset -- 3.3.8 Experiments Differentiating Optical and Digital Blur -- 3.3.9 Conclusions: Differentiating Optical and Digital Blur -- 3.4 Additional Forensic Challenges from Computational Cameras -- References -- Part II Attribution -- 4 Sensor Fingerprints: Camera Identification and Beyond -- 4.1 Introduction -- 4.2 Sensor Noise Fingerprints -- 4.3 Camera Identification -- 4.4 Sensor Misalignment -- 4.5 Image Manipulation Localization -- 4.6 Counter-Forensics -- 4.7 Camera Fingerprints and Deep Learning -- 4.8 Public Datasets -- 4.9 Concluding Remarks -- References -- 5 Source Camera Attribution from Videos -- 5.1 Introduction -- 5.2 Challenges in Attributing Videos -- 5.3 Attribution of Downsized Media -- 5.3.1 The Effect of In-Camera Downsizing on PRNU -- 5.3.2 Media with Mismatching Resolutions -- 5.4 Mitigation of Video Coding Artifacts -- 5.4.1 Video Coding from Attribution Perspective -- 5.4.2 Compensation of Loop Filtering -- 5.4.3 Coping with Quantization-Related Weakening of PRNU -- 5.5 Tackling Digital Stabilization -- 5.5.1 Inverting Frame Level Stabilization Transformations -- 5.5.2 Inverting Spatially Variant Stabilization Transformations -- 5.6 Datasets -- 5.7 Conclusions and Outlook -- References -- 6 Camera Identification at Large Scale -- 6.1 Introduction -- 6.2 Naive Methods -- 6.2.1 Linear Search -- 6.2.2 Sequential Trimming -- 6.3 Efficient Pairwise Correlation -- 6.3.1 Search over Fingerprint Digests -- 6.3.2 Pixel Quantization -- 6.3.3 Downsizing.
6.3.4 Dimension Reduction Using PCA and LDA -- 6.3.5 PRNU Compression via Random Projection -- 6.3.6 Preprocessing, Quantization, Coding -- 6.4 Decreasing the Number of Comparisons -- 6.4.1 Clustering by Cameras -- 6.4.2 Composite Fingerprints -- 6.5 Hybrid Methods -- 6.5.1 Search over Composite-Digest Search Tree -- 6.5.2 Search over Full Digest Search Tree -- 6.6 Conclusion -- References -- 7 Source Camera Model Identification -- 7.1 Introduction -- 7.1.1 Image Acquisition Pipeline -- 7.1.2 Problem Formulation -- 7.2 Model-Based Approaches -- 7.2.1 Color Filter Array (CFA) -- 7.2.2 Lens Effects -- 7.2.3 Other Processing and Defects -- 7.3 Data-Driven Approaches -- 7.3.1 Hand-Crafted Features -- 7.3.2 Learned Features -- 7.4 Datasets and Benchmarks -- 7.4.1 Template Dataset -- 7.4.2 State-of-the-art Datasets -- 7.4.3 Benchmark Protocol -- 7.5 Case Studies -- 7.5.1 Experimental Setup -- 7.5.2 Comparison of Closed-Set Methods -- 7.5.3 Comparison of Open-Set Methods -- 7.6 Conclusions and Outlook -- References -- 8 GAN Fingerprints in Face Image Synthesis -- 8.1 Introduction -- 8.2 Related Work -- 8.2.1 Generative Adversarial Networks -- 8.2.2 GAN Detection Techniques -- 8.3 GAN Fingerprint Removal: GANprintR -- 8.4 Databases -- 8.4.1 Real Face Images -- 8.4.2 Synthetic Face Images -- 8.5 Experimental Setup -- 8.5.1 Pre-processing -- 8.5.2 Facial Manipulation Detection Systems -- 8.5.3 Protocol -- 8.6 Experimental Results -- 8.6.1 Controlled Scenarios -- 8.6.2 In-the-Wild Scenarios -- 8.6.3 GAN-Fingerprint Removal -- 8.6.4 Impact of GANprintR on Other Fake Detectors -- 8.7 Conclusions and Outlook -- References -- Part III Integrity and Authenticity -- 9 Physical Integrity -- 9.1 Introduction -- 9.1.1 Journalistic Fact Checking -- 9.1.2 Physics-Based Methods in Multimedia Forensics -- 9.1.3 Outline of This Chapter.
9.2 Physics-Based Models for Forensic Analysis -- 9.2.1 Geometry and Optics -- 9.2.2 Photometry and Reflectance -- 9.3 Algorithms for Physics-Based Forensic Analysis -- 9.3.1 Principal Points and Homographies -- 9.3.2 Photometric Methods -- 9.3.3 Point Light Sources and Line Constraints in the Projective Space -- 9.4 Discussion and Outlook -- 9.5 Picture Credits -- References -- 10 Power Signature for Multimedia Forensics -- 10.1 Electric Network Frequency (ENF): An Environmental Signature for Multimedia Recordings -- 10.2 Technical Foundations of ENF-Based Forensics -- 10.2.1 Reference Signal Acquisition -- 10.2.2 ENF Signal Estimation -- 10.2.3 Higher Order Harmonics for ENF Estimation -- 10.3 ENF Characteristics and Embedding Conditions -- 10.3.1 Establishing Presence of ENF Traces -- 10.3.2 Modeling ENF Behavior -- 10.4 ENF Traces in the Visual Track -- 10.4.1 Mechanism of ENF Embedding in Videos and Images -- 10.4.2 ENF Extraction from the Visual Track -- 10.4.3 ENF Extraction from a Single Image -- 10.5 Key Applications in Forensics and Security -- 10.5.1 Joint Time-Location Authentication -- 10.5.2 Integrity Authentication -- 10.5.3 ENF-Based Localization -- 10.5.4 ENF-Based Camera Forensics -- 10.6 Anti-Forensics and Countermeasures -- 10.6.1 Anti-Forensics and Detection of Anti-Forensics -- 10.6.2 Game-Theoretic Analysis on ENF-Based Forensics -- 10.7 Applications Beyond Forensics and Security -- 10.7.1 Multimedia Synchronization -- 10.7.2 Time-Stamping Historical Recordings -- 10.7.3 Audio Restoration -- 10.8 Conclusions and Outlook -- References -- 11 Data-Driven Digital Integrity Verification -- 11.1 Introduction -- 11.2 Forensics Clues -- 11.2.1 Camera-Based Artifacts -- 11.2.2 JPEG Artifacts -- 11.2.3 Editing Artifacts -- 11.3 Localization Versus Detection -- 11.3.1 Patch-Based Localization -- 11.3.2 Image-Based Localization.
11.3.3 Detection -- 11.4 Architectural Solutions -- 11.4.1 Constrained Networks -- 11.4.2 Two-Branch Networks -- 11.4.3 Fully Convolutional Networks -- 11.4.4 Siamese Networks -- 11.5 Datasets -- 11.6 Major Challenges -- 11.7 Conclusions and Future Directions -- References -- 12 DeepFake Detection -- 12.1 Introduction -- 12.2 DeepFake Video Generation -- 12.3 Current DeepFake Detection Methods -- 12.3.1 General Principles -- 12.3.2 Categorization Based on Methodology -- 12.3.3 Categorization Based on Input Types -- 12.3.4 Categorization Based on Output Types -- 12.3.5 The DeepFake-o-Meter Platform -- 12.3.6 Datasets -- 12.3.7 Challenges -- 12.4 Future Directions -- 12.5 Conclusion and Outlook -- References -- 13 Video Frame Deletion and Duplication -- 13.1 Introduction -- 13.2 Related Work -- 13.2.1 Frame Deletion Detection -- 13.2.2 Frame Duplication Detection -- 13.3 Frame Deletion Detection -- 13.3.1 Baseline Approaches -- 13.3.2 C3D Network for Frame Deletion Detection -- 13.3.3 Experimental Result -- 13.4 Frame Duplication Detection -- 13.4.1 Coarse-Level Search for Duplicated Frame Sequences -- 13.4.2 Fine-Level Search for Duplicated Frames -- 13.4.3 Inconsistency Detector for Duplication Localization -- 13.4.4 Experimental Results -- 13.5 Conclusions and Discussion -- References -- 14 Integrity Verification Through File Container Analysis -- 14.1 Introduction -- 14.1.1 Main Image File Format Specifications -- 14.1.2 Main Video File Format Specifications -- 14.2 Analysis of Image File Formats -- 14.2.1 Analysis of JPEG Tables and Image Resolution -- 14.2.2 Analysis of Exif Metadata Parameters -- 14.2.3 Analysis of the JPEG File Format -- 14.2.4 Automatic Analysis of JPEG Header Information -- 14.2.5 Methods for the Identification of Social Networks -- 14.3 Analysis of Video File Formats -- 14.3.1 Analysis of the Video File Structure.
14.3.2 Automated Analysis of mp4-like Videos.
author_facet Sencar, Husrev Taha.
Verdoliva, Luisa.
Memon, Nasir.
author_variant h t s ht hts
author2 Verdoliva, Luisa.
Memon, Nasir.
author2_variant l v lv
n m nm
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Sencar, Husrev Taha.
title Multimedia Forensics.
title_full Multimedia Forensics.
title_fullStr Multimedia Forensics.
title_full_unstemmed Multimedia Forensics.
title_auth Multimedia Forensics.
title_new Multimedia Forensics.
title_sort multimedia forensics.
series Advances in Computer Vision and Pattern Recognition Series
series2 Advances in Computer Vision and Pattern Recognition Series
publisher Springer,
publishDate 2022
physical 1 online resource (494 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- Symbols -- Notation -- Part I Present and Challenges -- 1 What's in This Book and Why? -- 1.1 Introduction -- 1.2 Overviews -- 2 Media Forensics in the Age of Disinformation -- 2.1 Media and the Human Experience -- 2.2 The Threat to Democracy -- 2.3 New Technologies, New Threats -- 2.3.1 End-to-End Trainable Speech Synthesis -- 2.3.2 GAN-Based Codecs for Still and Moving Pictures -- 2.3.3 Improvements in Image Manipulation -- 2.3.4 Trillion-Param Models -- 2.3.5 Lottery Tickets and Compression in Generative Models -- 2.4 New Developments in the Private Sector -- 2.4.1 Image and Video -- 2.4.2 Language Models -- 2.5 Threats in the Wild -- 2.5.1 User-Generated Manipulations -- 2.5.2 Corporate Manipulation Services -- 2.5.3 Nation State Manipulation Examples -- 2.5.4 Use of AI Techniques for Deception 2019-2020 -- 2.6 Threat Models -- 2.6.1 Carnegie Mellon BEND Framework -- 2.6.2 The ABC Framework -- 2.6.3 The AMITT Framework -- 2.6.4 The SCOTCH Framework -- 2.6.5 Deception Model Effects -- 2.6.6 4Ds -- 2.6.7 Advanced Persistent Manipulators -- 2.6.8 Scenarios for Financial Harm -- 2.7 Investments in Countering False Media -- 2.7.1 DARPA SEMAFOR -- 2.7.2 The Partnership on AI Steering Committee on Media Integrity Working Group -- 2.7.3 JPEG Committee -- 2.7.4 Content Authenticity Initiative (CAI) -- 2.7.5 Media Review -- 2.8 Excerpts on Susceptibility and Resilience to Media Manipulation -- 2.8.1 Susceptibility and Resilience -- 2.8.2 Case Studies: Threats and Actors -- 2.8.3 Dynamics of Exploitative Activities -- 2.8.4 Meta-Review -- 2.9 Conclusion -- References -- 3 Computational Imaging -- 3.1 Introduction to Computational Imaging -- 3.2 Automation of Geometrically Correct Synthetic Blur -- 3.2.1 Primary Cue: Image Noise -- 3.2.2 Additional Photo Forensic Cues -- 3.2.3 Focus Manipulation Detection.
3.2.4 Portrait Mode Detection Experiments -- 3.2.5 Conclusions on Detecting Geometrically Correct Synthetic Blur -- 3.3 Differences Between Optical and Digital Blur -- 3.3.1 Authentically Blurred Edges -- 3.3.2 Authentic Sharp Edge -- 3.3.3 Forged Blurred Edge -- 3.3.4 Forged Sharp Edge -- 3.3.5 Distinguishing IGHs of the Edge Types -- 3.3.6 Classifying IGHs -- 3.3.7 Splicing Logo Dataset -- 3.3.8 Experiments Differentiating Optical and Digital Blur -- 3.3.9 Conclusions: Differentiating Optical and Digital Blur -- 3.4 Additional Forensic Challenges from Computational Cameras -- References -- Part II Attribution -- 4 Sensor Fingerprints: Camera Identification and Beyond -- 4.1 Introduction -- 4.2 Sensor Noise Fingerprints -- 4.3 Camera Identification -- 4.4 Sensor Misalignment -- 4.5 Image Manipulation Localization -- 4.6 Counter-Forensics -- 4.7 Camera Fingerprints and Deep Learning -- 4.8 Public Datasets -- 4.9 Concluding Remarks -- References -- 5 Source Camera Attribution from Videos -- 5.1 Introduction -- 5.2 Challenges in Attributing Videos -- 5.3 Attribution of Downsized Media -- 5.3.1 The Effect of In-Camera Downsizing on PRNU -- 5.3.2 Media with Mismatching Resolutions -- 5.4 Mitigation of Video Coding Artifacts -- 5.4.1 Video Coding from Attribution Perspective -- 5.4.2 Compensation of Loop Filtering -- 5.4.3 Coping with Quantization-Related Weakening of PRNU -- 5.5 Tackling Digital Stabilization -- 5.5.1 Inverting Frame Level Stabilization Transformations -- 5.5.2 Inverting Spatially Variant Stabilization Transformations -- 5.6 Datasets -- 5.7 Conclusions and Outlook -- References -- 6 Camera Identification at Large Scale -- 6.1 Introduction -- 6.2 Naive Methods -- 6.2.1 Linear Search -- 6.2.2 Sequential Trimming -- 6.3 Efficient Pairwise Correlation -- 6.3.1 Search over Fingerprint Digests -- 6.3.2 Pixel Quantization -- 6.3.3 Downsizing.
6.3.4 Dimension Reduction Using PCA and LDA -- 6.3.5 PRNU Compression via Random Projection -- 6.3.6 Preprocessing, Quantization, Coding -- 6.4 Decreasing the Number of Comparisons -- 6.4.1 Clustering by Cameras -- 6.4.2 Composite Fingerprints -- 6.5 Hybrid Methods -- 6.5.1 Search over Composite-Digest Search Tree -- 6.5.2 Search over Full Digest Search Tree -- 6.6 Conclusion -- References -- 7 Source Camera Model Identification -- 7.1 Introduction -- 7.1.1 Image Acquisition Pipeline -- 7.1.2 Problem Formulation -- 7.2 Model-Based Approaches -- 7.2.1 Color Filter Array (CFA) -- 7.2.2 Lens Effects -- 7.2.3 Other Processing and Defects -- 7.3 Data-Driven Approaches -- 7.3.1 Hand-Crafted Features -- 7.3.2 Learned Features -- 7.4 Datasets and Benchmarks -- 7.4.1 Template Dataset -- 7.4.2 State-of-the-art Datasets -- 7.4.3 Benchmark Protocol -- 7.5 Case Studies -- 7.5.1 Experimental Setup -- 7.5.2 Comparison of Closed-Set Methods -- 7.5.3 Comparison of Open-Set Methods -- 7.6 Conclusions and Outlook -- References -- 8 GAN Fingerprints in Face Image Synthesis -- 8.1 Introduction -- 8.2 Related Work -- 8.2.1 Generative Adversarial Networks -- 8.2.2 GAN Detection Techniques -- 8.3 GAN Fingerprint Removal: GANprintR -- 8.4 Databases -- 8.4.1 Real Face Images -- 8.4.2 Synthetic Face Images -- 8.5 Experimental Setup -- 8.5.1 Pre-processing -- 8.5.2 Facial Manipulation Detection Systems -- 8.5.3 Protocol -- 8.6 Experimental Results -- 8.6.1 Controlled Scenarios -- 8.6.2 In-the-Wild Scenarios -- 8.6.3 GAN-Fingerprint Removal -- 8.6.4 Impact of GANprintR on Other Fake Detectors -- 8.7 Conclusions and Outlook -- References -- Part III Integrity and Authenticity -- 9 Physical Integrity -- 9.1 Introduction -- 9.1.1 Journalistic Fact Checking -- 9.1.2 Physics-Based Methods in Multimedia Forensics -- 9.1.3 Outline of This Chapter.
9.2 Physics-Based Models for Forensic Analysis -- 9.2.1 Geometry and Optics -- 9.2.2 Photometry and Reflectance -- 9.3 Algorithms for Physics-Based Forensic Analysis -- 9.3.1 Principal Points and Homographies -- 9.3.2 Photometric Methods -- 9.3.3 Point Light Sources and Line Constraints in the Projective Space -- 9.4 Discussion and Outlook -- 9.5 Picture Credits -- References -- 10 Power Signature for Multimedia Forensics -- 10.1 Electric Network Frequency (ENF): An Environmental Signature for Multimedia Recordings -- 10.2 Technical Foundations of ENF-Based Forensics -- 10.2.1 Reference Signal Acquisition -- 10.2.2 ENF Signal Estimation -- 10.2.3 Higher Order Harmonics for ENF Estimation -- 10.3 ENF Characteristics and Embedding Conditions -- 10.3.1 Establishing Presence of ENF Traces -- 10.3.2 Modeling ENF Behavior -- 10.4 ENF Traces in the Visual Track -- 10.4.1 Mechanism of ENF Embedding in Videos and Images -- 10.4.2 ENF Extraction from the Visual Track -- 10.4.3 ENF Extraction from a Single Image -- 10.5 Key Applications in Forensics and Security -- 10.5.1 Joint Time-Location Authentication -- 10.5.2 Integrity Authentication -- 10.5.3 ENF-Based Localization -- 10.5.4 ENF-Based Camera Forensics -- 10.6 Anti-Forensics and Countermeasures -- 10.6.1 Anti-Forensics and Detection of Anti-Forensics -- 10.6.2 Game-Theoretic Analysis on ENF-Based Forensics -- 10.7 Applications Beyond Forensics and Security -- 10.7.1 Multimedia Synchronization -- 10.7.2 Time-Stamping Historical Recordings -- 10.7.3 Audio Restoration -- 10.8 Conclusions and Outlook -- References -- 11 Data-Driven Digital Integrity Verification -- 11.1 Introduction -- 11.2 Forensics Clues -- 11.2.1 Camera-Based Artifacts -- 11.2.2 JPEG Artifacts -- 11.2.3 Editing Artifacts -- 11.3 Localization Versus Detection -- 11.3.1 Patch-Based Localization -- 11.3.2 Image-Based Localization.
11.3.3 Detection -- 11.4 Architectural Solutions -- 11.4.1 Constrained Networks -- 11.4.2 Two-Branch Networks -- 11.4.3 Fully Convolutional Networks -- 11.4.4 Siamese Networks -- 11.5 Datasets -- 11.6 Major Challenges -- 11.7 Conclusions and Future Directions -- References -- 12 DeepFake Detection -- 12.1 Introduction -- 12.2 DeepFake Video Generation -- 12.3 Current DeepFake Detection Methods -- 12.3.1 General Principles -- 12.3.2 Categorization Based on Methodology -- 12.3.3 Categorization Based on Input Types -- 12.3.4 Categorization Based on Output Types -- 12.3.5 The DeepFake-o-Meter Platform -- 12.3.6 Datasets -- 12.3.7 Challenges -- 12.4 Future Directions -- 12.5 Conclusion and Outlook -- References -- 13 Video Frame Deletion and Duplication -- 13.1 Introduction -- 13.2 Related Work -- 13.2.1 Frame Deletion Detection -- 13.2.2 Frame Duplication Detection -- 13.3 Frame Deletion Detection -- 13.3.1 Baseline Approaches -- 13.3.2 C3D Network for Frame Deletion Detection -- 13.3.3 Experimental Result -- 13.4 Frame Duplication Detection -- 13.4.1 Coarse-Level Search for Duplicated Frame Sequences -- 13.4.2 Fine-Level Search for Duplicated Frames -- 13.4.3 Inconsistency Detector for Duplication Localization -- 13.4.4 Experimental Results -- 13.5 Conclusions and Discussion -- References -- 14 Integrity Verification Through File Container Analysis -- 14.1 Introduction -- 14.1.1 Main Image File Format Specifications -- 14.1.2 Main Video File Format Specifications -- 14.2 Analysis of Image File Formats -- 14.2.1 Analysis of JPEG Tables and Image Resolution -- 14.2.2 Analysis of Exif Metadata Parameters -- 14.2.3 Analysis of the JPEG File Format -- 14.2.4 Automatic Analysis of JPEG Header Information -- 14.2.5 Methods for the Identification of Social Networks -- 14.3 Analysis of Video File Formats -- 14.3.1 Analysis of the Video File Structure.
14.3.2 Automated Analysis of mp4-like Videos.
isbn 9789811676215
9789811676208
callnumber-first Q - Science
callnumber-subject QA - Mathematics
callnumber-label QA76
callnumber-sort QA 276.9 A25
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6944947
illustrated Not Illustrated
oclc_num 1308977816
work_keys_str_mv AT sencarhusrevtaha multimediaforensics
AT verdolivaluisa multimediaforensics
AT memonnasir multimediaforensics
status_str n
ids_txt_mv (MiAaPQ)5006944947
(Au-PeEL)EBL6944947
(OCoLC)1308977816
carrierType_str_mv cr
hierarchy_parent_title Advances in Computer Vision and Pattern Recognition Series
is_hierarchy_title Multimedia Forensics.
container_title Advances in Computer Vision and Pattern Recognition Series
author2_original_writing_str_mv noLinkedField
noLinkedField
marc_error Info : Unimarc and ISO-8859-1 translations identical, choosing ISO-8859-1. --- [ 856 : z ]
_version_ 1792331062288842752
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11062nam a22004813i 4500</leader><controlfield tag="001">5006944947</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073845.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2022 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811676215</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789811676208</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006944947</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6944947</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1308977816</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.A25</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sencar, Husrev Taha.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multimedia Forensics.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">Springer,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">Ã2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (494 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advances in Computer Vision and Pattern Recognition Series</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Symbols -- Notation -- Part I Present and Challenges -- 1 What's in This Book and Why? -- 1.1 Introduction -- 1.2 Overviews -- 2 Media Forensics in the Age of Disinformation -- 2.1 Media and the Human Experience -- 2.2 The Threat to Democracy -- 2.3 New Technologies, New Threats -- 2.3.1 End-to-End Trainable Speech Synthesis -- 2.3.2 GAN-Based Codecs for Still and Moving Pictures -- 2.3.3 Improvements in Image Manipulation -- 2.3.4 Trillion-Param Models -- 2.3.5 Lottery Tickets and Compression in Generative Models -- 2.4 New Developments in the Private Sector -- 2.4.1 Image and Video -- 2.4.2 Language Models -- 2.5 Threats in the Wild -- 2.5.1 User-Generated Manipulations -- 2.5.2 Corporate Manipulation Services -- 2.5.3 Nation State Manipulation Examples -- 2.5.4 Use of AI Techniques for Deception 2019-2020 -- 2.6 Threat Models -- 2.6.1 Carnegie Mellon BEND Framework -- 2.6.2 The ABC Framework -- 2.6.3 The AMITT Framework -- 2.6.4 The SCOTCH Framework -- 2.6.5 Deception Model Effects -- 2.6.6 4Ds -- 2.6.7 Advanced Persistent Manipulators -- 2.6.8 Scenarios for Financial Harm -- 2.7 Investments in Countering False Media -- 2.7.1 DARPA SEMAFOR -- 2.7.2 The Partnership on AI Steering Committee on Media Integrity Working Group -- 2.7.3 JPEG Committee -- 2.7.4 Content Authenticity Initiative (CAI) -- 2.7.5 Media Review -- 2.8 Excerpts on Susceptibility and Resilience to Media Manipulation -- 2.8.1 Susceptibility and Resilience -- 2.8.2 Case Studies: Threats and Actors -- 2.8.3 Dynamics of Exploitative Activities -- 2.8.4 Meta-Review -- 2.9 Conclusion -- References -- 3 Computational Imaging -- 3.1 Introduction to Computational Imaging -- 3.2 Automation of Geometrically Correct Synthetic Blur -- 3.2.1 Primary Cue: Image Noise -- 3.2.2 Additional Photo Forensic Cues -- 3.2.3 Focus Manipulation Detection.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.4 Portrait Mode Detection Experiments -- 3.2.5 Conclusions on Detecting Geometrically Correct Synthetic Blur -- 3.3 Differences Between Optical and Digital Blur -- 3.3.1 Authentically Blurred Edges -- 3.3.2 Authentic Sharp Edge -- 3.3.3 Forged Blurred Edge -- 3.3.4 Forged Sharp Edge -- 3.3.5 Distinguishing IGHs of the Edge Types -- 3.3.6 Classifying IGHs -- 3.3.7 Splicing Logo Dataset -- 3.3.8 Experiments Differentiating Optical and Digital Blur -- 3.3.9 Conclusions: Differentiating Optical and Digital Blur -- 3.4 Additional Forensic Challenges from Computational Cameras -- References -- Part II Attribution -- 4 Sensor Fingerprints: Camera Identification and Beyond -- 4.1 Introduction -- 4.2 Sensor Noise Fingerprints -- 4.3 Camera Identification -- 4.4 Sensor Misalignment -- 4.5 Image Manipulation Localization -- 4.6 Counter-Forensics -- 4.7 Camera Fingerprints and Deep Learning -- 4.8 Public Datasets -- 4.9 Concluding Remarks -- References -- 5 Source Camera Attribution from Videos -- 5.1 Introduction -- 5.2 Challenges in Attributing Videos -- 5.3 Attribution of Downsized Media -- 5.3.1 The Effect of In-Camera Downsizing on PRNU -- 5.3.2 Media with Mismatching Resolutions -- 5.4 Mitigation of Video Coding Artifacts -- 5.4.1 Video Coding from Attribution Perspective -- 5.4.2 Compensation of Loop Filtering -- 5.4.3 Coping with Quantization-Related Weakening of PRNU -- 5.5 Tackling Digital Stabilization -- 5.5.1 Inverting Frame Level Stabilization Transformations -- 5.5.2 Inverting Spatially Variant Stabilization Transformations -- 5.6 Datasets -- 5.7 Conclusions and Outlook -- References -- 6 Camera Identification at Large Scale -- 6.1 Introduction -- 6.2 Naive Methods -- 6.2.1 Linear Search -- 6.2.2 Sequential Trimming -- 6.3 Efficient Pairwise Correlation -- 6.3.1 Search over Fingerprint Digests -- 6.3.2 Pixel Quantization -- 6.3.3 Downsizing.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3.4 Dimension Reduction Using PCA and LDA -- 6.3.5 PRNU Compression via Random Projection -- 6.3.6 Preprocessing, Quantization, Coding -- 6.4 Decreasing the Number of Comparisons -- 6.4.1 Clustering by Cameras -- 6.4.2 Composite Fingerprints -- 6.5 Hybrid Methods -- 6.5.1 Search over Composite-Digest Search Tree -- 6.5.2 Search over Full Digest Search Tree -- 6.6 Conclusion -- References -- 7 Source Camera Model Identification -- 7.1 Introduction -- 7.1.1 Image Acquisition Pipeline -- 7.1.2 Problem Formulation -- 7.2 Model-Based Approaches -- 7.2.1 Color Filter Array (CFA) -- 7.2.2 Lens Effects -- 7.2.3 Other Processing and Defects -- 7.3 Data-Driven Approaches -- 7.3.1 Hand-Crafted Features -- 7.3.2 Learned Features -- 7.4 Datasets and Benchmarks -- 7.4.1 Template Dataset -- 7.4.2 State-of-the-art Datasets -- 7.4.3 Benchmark Protocol -- 7.5 Case Studies -- 7.5.1 Experimental Setup -- 7.5.2 Comparison of Closed-Set Methods -- 7.5.3 Comparison of Open-Set Methods -- 7.6 Conclusions and Outlook -- References -- 8 GAN Fingerprints in Face Image Synthesis -- 8.1 Introduction -- 8.2 Related Work -- 8.2.1 Generative Adversarial Networks -- 8.2.2 GAN Detection Techniques -- 8.3 GAN Fingerprint Removal: GANprintR -- 8.4 Databases -- 8.4.1 Real Face Images -- 8.4.2 Synthetic Face Images -- 8.5 Experimental Setup -- 8.5.1 Pre-processing -- 8.5.2 Facial Manipulation Detection Systems -- 8.5.3 Protocol -- 8.6 Experimental Results -- 8.6.1 Controlled Scenarios -- 8.6.2 In-the-Wild Scenarios -- 8.6.3 GAN-Fingerprint Removal -- 8.6.4 Impact of GANprintR on Other Fake Detectors -- 8.7 Conclusions and Outlook -- References -- Part III Integrity and Authenticity -- 9 Physical Integrity -- 9.1 Introduction -- 9.1.1 Journalistic Fact Checking -- 9.1.2 Physics-Based Methods in Multimedia Forensics -- 9.1.3 Outline of This Chapter.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.2 Physics-Based Models for Forensic Analysis -- 9.2.1 Geometry and Optics -- 9.2.2 Photometry and Reflectance -- 9.3 Algorithms for Physics-Based Forensic Analysis -- 9.3.1 Principal Points and Homographies -- 9.3.2 Photometric Methods -- 9.3.3 Point Light Sources and Line Constraints in the Projective Space -- 9.4 Discussion and Outlook -- 9.5 Picture Credits -- References -- 10 Power Signature for Multimedia Forensics -- 10.1 Electric Network Frequency (ENF): An Environmental Signature for Multimedia Recordings -- 10.2 Technical Foundations of ENF-Based Forensics -- 10.2.1 Reference Signal Acquisition -- 10.2.2 ENF Signal Estimation -- 10.2.3 Higher Order Harmonics for ENF Estimation -- 10.3 ENF Characteristics and Embedding Conditions -- 10.3.1 Establishing Presence of ENF Traces -- 10.3.2 Modeling ENF Behavior -- 10.4 ENF Traces in the Visual Track -- 10.4.1 Mechanism of ENF Embedding in Videos and Images -- 10.4.2 ENF Extraction from the Visual Track -- 10.4.3 ENF Extraction from a Single Image -- 10.5 Key Applications in Forensics and Security -- 10.5.1 Joint Time-Location Authentication -- 10.5.2 Integrity Authentication -- 10.5.3 ENF-Based Localization -- 10.5.4 ENF-Based Camera Forensics -- 10.6 Anti-Forensics and Countermeasures -- 10.6.1 Anti-Forensics and Detection of Anti-Forensics -- 10.6.2 Game-Theoretic Analysis on ENF-Based Forensics -- 10.7 Applications Beyond Forensics and Security -- 10.7.1 Multimedia Synchronization -- 10.7.2 Time-Stamping Historical Recordings -- 10.7.3 Audio Restoration -- 10.8 Conclusions and Outlook -- References -- 11 Data-Driven Digital Integrity Verification -- 11.1 Introduction -- 11.2 Forensics Clues -- 11.2.1 Camera-Based Artifacts -- 11.2.2 JPEG Artifacts -- 11.2.3 Editing Artifacts -- 11.3 Localization Versus Detection -- 11.3.1 Patch-Based Localization -- 11.3.2 Image-Based Localization.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.3.3 Detection -- 11.4 Architectural Solutions -- 11.4.1 Constrained Networks -- 11.4.2 Two-Branch Networks -- 11.4.3 Fully Convolutional Networks -- 11.4.4 Siamese Networks -- 11.5 Datasets -- 11.6 Major Challenges -- 11.7 Conclusions and Future Directions -- References -- 12 DeepFake Detection -- 12.1 Introduction -- 12.2 DeepFake Video Generation -- 12.3 Current DeepFake Detection Methods -- 12.3.1 General Principles -- 12.3.2 Categorization Based on Methodology -- 12.3.3 Categorization Based on Input Types -- 12.3.4 Categorization Based on Output Types -- 12.3.5 The DeepFake-o-Meter Platform -- 12.3.6 Datasets -- 12.3.7 Challenges -- 12.4 Future Directions -- 12.5 Conclusion and Outlook -- References -- 13 Video Frame Deletion and Duplication -- 13.1 Introduction -- 13.2 Related Work -- 13.2.1 Frame Deletion Detection -- 13.2.2 Frame Duplication Detection -- 13.3 Frame Deletion Detection -- 13.3.1 Baseline Approaches -- 13.3.2 C3D Network for Frame Deletion Detection -- 13.3.3 Experimental Result -- 13.4 Frame Duplication Detection -- 13.4.1 Coarse-Level Search for Duplicated Frame Sequences -- 13.4.2 Fine-Level Search for Duplicated Frames -- 13.4.3 Inconsistency Detector for Duplication Localization -- 13.4.4 Experimental Results -- 13.5 Conclusions and Discussion -- References -- 14 Integrity Verification Through File Container Analysis -- 14.1 Introduction -- 14.1.1 Main Image File Format Specifications -- 14.1.2 Main Video File Format Specifications -- 14.2 Analysis of Image File Formats -- 14.2.1 Analysis of JPEG Tables and Image Resolution -- 14.2.2 Analysis of Exif Metadata Parameters -- 14.2.3 Analysis of the JPEG File Format -- 14.2.4 Automatic Analysis of JPEG Header Information -- 14.2.5 Methods for the Identification of Social Networks -- 14.3 Analysis of Video File Formats -- 14.3.1 Analysis of the Video File Structure.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">14.3.2 Automated Analysis of mp4-like Videos.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Verdoliva, Luisa.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Memon, Nasir.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Sencar, Husrev Taha</subfield><subfield code="t">Multimedia Forensics</subfield><subfield code="d">Singapore : Springer,c2022</subfield><subfield code="z">9789811676208</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advances in Computer Vision and Pattern Recognition Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6944947</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>