Mathematical Modeling of the Human Brain : : From Magnetic Resonance Images to Finite Element Simulation.

Saved in:
Bibliographic Details
Superior document:Simula SpringerBriefs on Computing Series ; v.10
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2022.
{copy}2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Series:Simula SpringerBriefs on Computing Series
Online Access:
Physical Description:1 online resource (129 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05349nam a22004453i 4500
001 5006897088
003 MiAaPQ
005 20240229073845.0
006 m o d |
007 cr cnu||||||||
008 240229s2022 xx o ||||0 eng d
020 |a 9783030951368  |q (electronic bk.) 
020 |z 9783030951351 
035 |a (MiAaPQ)5006897088 
035 |a (Au-PeEL)EBL6897088 
035 |a (OCoLC)1301515755 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a TA342-343 
100 1 |a Mardal, Kent-André. 
245 1 0 |a Mathematical Modeling of the Human Brain :  |b From Magnetic Resonance Images to Finite Element Simulation. 
250 |a 1st ed. 
264 1 |a Cham :  |b Springer International Publishing AG,  |c 2022. 
264 4 |c {copy}2022. 
300 |a 1 online resource (129 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Simula SpringerBriefs on Computing Series ;  |v v.10 
505 0 |a Intro -- Series Foreword -- Foreword -- Preface -- Contents -- Chapter 1 Introduction -- 1.1 A model problem -- 1.2 On reading this book -- 1.3 Datasets and scripts -- 1.4 Other software -- 1.5 Book outline -- Chapter 2 Working with magnetic resonance images of the brain -- 2.1 Human brain anatomy -- 2.2 Magnetic resonance imaging -- 2.2.1 Structural MRI: T1- and T2-weighted images -- 2.2.2 Diffusion-weighted imaging and diffusion tensor imaging -- 2.3 Viewing and working with MRI datasets -- 2.3.1 The DICOM file format -- 2.3.2 Working with the contents of an MRI dataset -- 2.4 From images to simulation: A software ecosystem -- 2.4.1 FreeSurfer for MRI processing and segmentation -- 2.4.2 NiBabel: A python tool for MRI data -- 2.4.3 SVM-Tk for volume mesh generation -- 2.4.4 The FEniCS Project for finite element simulation -- 2.4.5 ParaView and other visualization tools -- 2.4.6 Meshio for data and mesh conversion -- 2.4.7 Testing the software pipeline -- Chapter 3 Getting started: from T1 images to simulation -- 3.1 Generating a volume mesh from T1-weighted MRI -- 3.1.1 Extracting a single series from an MRI dataset -- 3.1.2 Creating surfaces from T1-weighted MRI -- 3.1.3 Creating a volume mesh from a surface -- 3.2 Improved volume meshing by surface preprocessing -- 3.2.1 Remeshing a surface -- 3.2.2 Smoothing a surface file -- 3.2.3 Preventing surface intersections and missing facets -- 3.3 Simulation of diffusion into the brain hemisphere -- 3.3.1 Research question and model formulation -- 3.3.2 Numerical solution of the diffusion equation -- 3.3.3 Implementation using FEniCS -- 3.3.4 Visualization of solution fields -- 3.4 Advanced topics for working with larger cohorts -- 3.4.1 Scripting the extraction of MRI series -- 3.4.2 More about FreeSurfer's recon-all -- Chapter 4 Introducing heterogeneities. 
505 8 |a 4.1 Hemisphere meshing with gray and white matter -- 4.1.1 Converting pial and gray/white surface files to STL -- 4.1.2 Creating the gray and white matter mesh -- 4.1.3 More about defining SVM-Tk subdomain maps -- 4.2 Separating the ventricles from the gray and white matter -- 4.2.1 Extracting a ventricular surface from MRI data -- 4.2.2 Removing the ventricular volume -- 4.3 Combining the hemispheres -- 4.3.1 Repairing overlapping surfaces -- 4.3.2 Combining surfaces to create a brain mesh -- 4.4 Working with parcellations and finite element meshes -- 4.4.1 Mapping a parcellation onto a finite element mesh -- 4.4.2 Mapping parcellations respecting subdomains -- 4.5 Refinement of parcellated meshes -- 4.5.1 Extending the Python interface of DOLFIN/FEniCS -- 4.5.2 Refining certain regions of parcellated meshes -- Chapter 5 Introducing directionality with diffusion tensors -- 5.1 Extracting mean diffusivity and fractional anisotropy -- 5.1.1 Extracting and converting DTI data -- 5.1.2 DTI reconstruction with FreeSurfer -- 5.1.3 Mean diffusivity and fractional anisotropy -- 5.2 Finite element representation of the diffusion tensor -- 5.2.1 Preprocessing the diffusion tensor data -- 5.2.2 Representing the DTI tensor in FEniCS -- 5.2.3 A note on co-registering DTI and T1 data -- Chapter 6 Simulating anisotropic diffusion in heterogeneous brain regions -- 6.1 Molecular diffusion in one dimension -- 6.1.1 Analytical solution -- 6.1.2 Numerical solution and handling numerical artifacts -- 6.2 Anisotropic diffusion in 3D brain regions -- 6.2.1 Regional distribution of gadobutrol -- 6.2.2 Accuracy and convergence of computed quantities -- Chapter 7 Concluding remarks and outlook -- References -- Index. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Rognes, Marie E. 
700 1 |a Thompson, Travis B. 
700 1 |a Valnes, Lars Magnus. 
776 0 8 |i Print version:  |a Mardal, Kent-André  |t Mathematical Modeling of the Human Brain  |d Cham : Springer International Publishing AG,c2022  |z 9783030951351 
797 2 |a ProQuest (Firm) 
830 0 |a Simula SpringerBriefs on Computing Series 
856 4 0 |u https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6897088  |z Click to View