Methodologies for Seismic Soil–Structure Interaction Analysis in the Design and Assessment of Nuclear Installations.

Saved in:
Bibliographic Details
Superior document:IAEA TECDOC Series ; v.1990
:
Place / Publishing House:Vienna : : IAEA,, 2022.
{copy}2022.
Year of Publication:2022
Edition:1st ed.
Language:English
Series:IAEA TECDOC Series
Online Access:
Physical Description:1 online resource (196 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006891126
ctrlnum (MiAaPQ)5006891126
(Au-PeEL)EBL6891126
(OCoLC)1302009050
collection bib_alma
record_format marc
spelling IAEA.
Methodologies for Seismic Soil–Structure Interaction Analysis in the Design and Assessment of Nuclear Installations.
1st ed.
Vienna : IAEA, 2022.
{copy}2022.
1 online resource (196 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
IAEA TECDOC Series ; v.1990
Intro -- 1. INTRODUCTION -- 1.1. BACKGROUND -- 1.2. OBJECTIVE -- 1.3. SCOPE -- 1.4. STRUCTURE -- 2. EVOLUtION of SOIL-STRUCTURE INTERACTION ANALYSIS, Design Considerations and Country PracticeS -- 2.1. EVOLUTION OF SOIL-STRUCTURE INTERACTION ANALYSIS -- 2.2. DESIGN CONSIDERATIONS -- 2.3. NATIONAL PRACTICES -- 2.3.1. United States of America -- 2.3.2. France -- 2.3.3. Canada -- 2.3.4. Japan -- 2.3.5. Russian Federation -- 2.3.6. European Utility Requirements -- 2.4. REQUIREMENTS AND RECOMMENDATION IN IAEA SAFETY STANDARDS -- 2.5. SIMPLE, SIMPLIFIED AND DETAILED METHODS, MODELS AND PARAMETERS -- 3. ELEMENTS OF SOIL-STRUCTURE INTERACTION ANALYSIS -- 3.1. FREE FIELD GROUND MOTION -- 3.2. MODELLING SOIL, STRUCTURES AND FOUNDATIONS -- 3.2.1. Soil for design basis and beyond design basis earthquakes -- 3.2.2. Structures and soil-structure interaction models -- 3.2.3. Decisions to be made in modelling soil, structures and foundations -- 3.3. UNCERTAINTIES -- 3.3.1. Aleatory uncertainties and epistemic uncertainties -- 3.3.2. Avoiding double counting of uncertainties -- 3.3.3. Treating uncertainties in the soil-structure interaction analyses: explicit inclusion and sensitivity studies -- 4. SITE CONFIGURATION AND SOIL PROPERTIES -- 4.1. SITE CONFIGURATION AND CHARACTERIZATION -- 4.2. SOIL BEHAVIOUR -- 4.3. EXPERIMENTAL DESCRIPTION OF SOIL BEHAVIOUR -- 4.3.1. Linear viscoelastic model -- 4.3.2. Nonlinear one-dimensional model -- 4.3.3. Nonlinear two and three-dimensional models -- 4.4. ITERATIVE LINEAR MODEL AND ITS LIMITATIONS -- 4.5. PHYSICAL PARAMETERS -- 4.6. FIELD MEASUREMENTS AND LABORATORY MEASUREMENTS -- 4.6.1. Site instrumentation -- 4.6.2. Field investigations -- 4.6.3. Laboratory measurements -- 4.6.4. Comparison of field and laboratory tests -- 4.6.5. Summary of parameters and measurement techniques -- 4.7. CALIBRATION AND VALIDATION.
4.8. UNCERTAINTIES -- 4.9. SPATIAL VARIABILITY -- 5. SEISMIC HAZARD ANALYSIS FOR NUCLEAR INSTALLATIONS -- 5.1. PSHA PERSPECTIVE -- 5.2. DSHA PERSPECTIVE -- 5.3. INTERFACES BETWEEN THE SEISMIC HAZARD ANALYSIS AND THE SOIL-STRUCTURE INTERACTION ANALYSIS TEAMS -- 6. SEISMIC WAVE FIELDS AND FREE FIELD GROUND MOTIONS -- 6.1. SEISMIC WAVE FIELDS -- 6.1.1. Perspective and spatial variability of ground motion -- 6.1.2. Spatial variability of ground motions -- 6.2. FREE FIELD GROUND MOTION DEVELOPMENT -- 6.3. RECORDED DATA -- 6.3.1. 3-D versus 1-D records/motions -- 6.3.1.1. Earthquake Ground Motions: Analytical Models -- 6.3.1.2. Earthquake Ground Motions: Numerical Models -- 6.3.2. Uncertainties -- 6.3.2.1. Uncertain sources -- 6.3.2.2. Uncertain path (rock) -- 6.3.2.3. Uncertain site (soil) -- 6.4. SEISMIC WAVE INCOHERENCE -- 6.4.1. General consideration -- 6.4.2. Incoherence modelling -- 6.4.2.1. Incoherence in 3-D -- 6.4.2.2. Theoretical Assumptions behind SVGM Models -- 6.4.2.3. Nuclear power plant - specific applications -- 7. SITE RESPONSE ANALYSIS AND SEISMIC INPUT -- 7.1. OVERVIEW -- 7.2. SITE RESPONSE ANALYSIS -- 7.2.1. Perspective -- 7.2.2. Foundation input response spectra -- 7.3. SITE RESPONSE ANALYSIS APPROACHES -- 7.3.1. Idealized site profile and wave propagation mechanisms -- 7.3.1.1. Convolution -- 7.3.1.2. Deconvolution -- 7.3.2. Non-idealized site profile and wave propagation mechanisms -- 7.3.3. Analysis models and modelling assumptions -- 7.3.3.1. D models -- 7.3.3.2. 3-D/3C versus 1-D/3C versus 1-D/1C seismic models -- 7.3.3.3. Propagation of higher frequency seismic motions -- 7.3.3.4. Material modelling and assumptions -- 7.3.3.5. 1-D/3C vs 1-D/2C vs 1-D/1C material behaviour and wave propagation models -- 7.4. STANDARD AND SITE SPECIFIC RESPONSE SPECTRA -- 7.4.1. Introduction -- 7.4.2. Standard response spectra.
7.4.3. Site specific response spectra -- 7.5. TIME HISTORIES -- 7.6. UNCERTAINTIES -- 7.7. LIMITATIONS OF TIME AND FREQUENCY DOMAIN METHODS FOR FREE FIELD GROUND MOTIONS -- 8. METHODS AND MODELS FOR Soil-Structure Interaction ANALYSIS -- 8.1. BASIC STEPS FOR SOIL-STRUCTURE INTERACTION ANALYSIS -- 8.1.1. Preparatory activities -- 8.1.2. Site specific modelling -- 8.2. DIRECT METHODS -- 8.2.1. Discrete methods -- 8.2.1.1. Finite element method -- 8.2.1.2. Finite difference method -- 8.2.2. Linear finite element methods -- 8.2.3. Nonlinear finite element methods -- 8.2.4. Inelasticity, elasto-plasticity -- 8.2.5. Dynamics solution techniques -- 8.2.6. Energy dissipation -- 8.3. SUBSTRUCTURE METHODS -- 8.3.1. Principles -- 8.3.2. Rigid or flexible boundary method -- 8.3.3. The flexible volume method -- 8.3.4. The subtraction method -- 8.3.5. SASSI: System for analysis of soil-structure interaction -- 8.3.6. CLASSI: Soil-structure interaction - A linear continuum mechanic approach -- 8.4. SOIL-STRUCTURE INTERACTION COMPUTATIONAL MODELS -- 8.4.1. Soil/rock linear and nonlinear modelling -- 8.4.2. Drained and undrained modelling -- 8.4.2.1. Drained analysis -- 8.4.2.2. Undrained analysis -- 8.4.3. Soil material modelling: linear and nonlinear elastic models -- 8.4.3.1. Elastic-plastic models -- 8.4.4. Structural models, linear and nonlinear: shells, plates, walls, beams, trusses, solids -- 8.4.5. Contact modelling -- 8.4.6. Structures with a base isolation/dissipation system -- 8.4.7. Foundation models -- 8.4.7.1. Shallow and embedded foundation slabs and walls. -- 8.4.7.2. Deep foundations (piles, caissons and shaft foundations). -- 8.4.7.3. Deeply embedded foundations. -- 8.4.7.4. Foundation flexibility and base isolator/dissipator systems. -- 8.4.8. Deeply embedded structures -- 8.4.9. Buoyancy modelling -- 8.4.10. Domain boundaries.
8.4.11. Seismic load input -- 8.4.11.1. Domain reduction method -- 8.4.12. Structure-soil-structure interaction -- 8.4.12.1. Detailed methods and models of structure-soil-structure interaction -- 8.4.12.2. Simplified models: symmetry and anti-symmetry -- 8.4.13. Simplified models -- 8.5. PROBABILISTIC RESPONSE ANALYSIS -- 8.5.1. Overview -- 8.5.2. Simulations of SSI phenomena -- 8.5.2.1. Seismic methodology analysis chain with statistics (SMACS) -- 8.5.2.2. Monte Carlo approach to modelling and analysis -- 8.5.2.3. Random vibration theory -- 8.5.2.4. Stochastic finite element method -- 8.6. LIMITATION OF NUMERICAL MODELLING -- 9. Seismic RESPONSE ASPECTS FOR DESIGN AND ASSESSMENT OF NUCLEAR INSTALLATIONS -- 9.1. OVERALL MODELLING DECISIONS -- 9.2. SOIL MODELLING -- 9.3. FREE FIELD GROUND MOTIONS -- 9.4. SITE RESPONSE ANALYSIS - APPROACHES 1, 2, 3, AND 4 -- 9.4.1. 1-D model -- 9.4.1.1. Comparison EQL / nonlinear (cases 1a-1b) -- 9.4.1.2. Total vs effective stress analyses (cases 1a-2a) -- 9.4.1.3. Vertical motion -- 9.4.1.4. Lightly damped profiles -- 9.4.2. 2-D models -- 9.4.3. The 3 X 1C approach -- 9.4.4. Real 3C motions -- Realistic three component (3C) seismic motions that are comprised of body and surface waves can be used for SSI analysis provided that the full 3C wave field of seismic motions are available. Such full wave fields can be obtained using the analytic so... -- 9.5. SOIL-STRUCTURE INTERACTION MODELS -- 9.5.1. Structure -- 9.5.1.1. Multi-step vs single step soil-structure interaction analyses -- 9.5.1.2. Structure modelling requirements -- 9.5.1.3. Decision-making -- 9.5.2. Foundations -- 9.5.2.1. Foundation modelling for conventional foundation/structure systems -- 9.5.2.2. Simplified models for conventional foundation/structure systems -- 9.5.2.3. Limitations of the substructure method -- 9.5.2.4. Deep foundations.
9.5.2.5. Embedded foundation -- 9.5.2.6. Deeply embedded foundations (SMRs) -- 9.5.3. Analysis methods -- 9.5.3.1. Substructure methods -- 9.5.3.2. Direct methods: linear, nonlinear (deeply embedded SMR, deep foundations, sliding, uplift) -- The direct method analyses the idealized soil-structure system in a single step. The direct method is applicable to linear and equivalent linear idealizations and is needed for nonlinear SSI analyses. This contrasts with the substructure method that d... -- 9.5.4. Hierarchical modelling and simulation of an inelastic soil-structure interaction system -- 9.6. INCOHERENT MOTIONS -- 9.6.1. Case study of the effects of ground motion incoherence on a nuclear power plant -- 9.7. UNCERTINITIES AND SENTIVITIY STUDIES -- 9.7.1. Ground motion -- 9.7.1.1. Specification of design basis earthquake and beyond design basis earthquake ground motion -- 9.7.1.2. Variabilities in the site specific ground motion -- 9.7.2. Soil -- 9.7.3. Structure uncertainties -- 9.7.4. Verification and validation of models -- 9.8. STRUCTURAL RESPONSE QUANTITIES -- 9.8.1. Deterministic analyses -- 9.8.1.1. Design forces, displacements, and stresses -- 9.8.1.2. Seismic input to subsystems -- 9.8.2. Probabilistic analyses -- 9.8.2.1. Step-by-step probabilistic analyses -- 9.8.2.2. Epistemic uncertainty and aleatory uncertainty -- 10. Available Software FOR Soil-Structure Interaction ANALYSIS -- 10.1. EXAMPLES ON SOFTWARE FOR USE IN SOIL-STRUCTURE INTERACTION ANALYSES FOR NUCLEAR INSTALLATIONS -- 10.1.1. Available programs for soil-structure interaction analyses -- 10.2. VERIFICATION AND VALIDATION OF SSI SOFTWARE -- 10.2.1. introduction -- 10.2.2. Importance of verification and validation -- 10.2.3. Detailed look at verification and validation -- 10.2.4. Examples of verification and validation -- REFERENCES.
CONTRIBUTORS TO DRAFTING AND REVIEW.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Print version: IAEA Methodologies for Seismic Soil–Structure Interaction Analysis in the Design and Assessment of Nuclear Installations Vienna : IAEA,c2022 9789201431219
ProQuest (Firm)
IAEA TECDOC Series
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6891126 Click to View
language English
format eBook
author IAEA.
spellingShingle IAEA.
Methodologies for Seismic Soil–Structure Interaction Analysis in the Design and Assessment of Nuclear Installations.
IAEA TECDOC Series ;
Intro -- 1. INTRODUCTION -- 1.1. BACKGROUND -- 1.2. OBJECTIVE -- 1.3. SCOPE -- 1.4. STRUCTURE -- 2. EVOLUtION of SOIL-STRUCTURE INTERACTION ANALYSIS, Design Considerations and Country PracticeS -- 2.1. EVOLUTION OF SOIL-STRUCTURE INTERACTION ANALYSIS -- 2.2. DESIGN CONSIDERATIONS -- 2.3. NATIONAL PRACTICES -- 2.3.1. United States of America -- 2.3.2. France -- 2.3.3. Canada -- 2.3.4. Japan -- 2.3.5. Russian Federation -- 2.3.6. European Utility Requirements -- 2.4. REQUIREMENTS AND RECOMMENDATION IN IAEA SAFETY STANDARDS -- 2.5. SIMPLE, SIMPLIFIED AND DETAILED METHODS, MODELS AND PARAMETERS -- 3. ELEMENTS OF SOIL-STRUCTURE INTERACTION ANALYSIS -- 3.1. FREE FIELD GROUND MOTION -- 3.2. MODELLING SOIL, STRUCTURES AND FOUNDATIONS -- 3.2.1. Soil for design basis and beyond design basis earthquakes -- 3.2.2. Structures and soil-structure interaction models -- 3.2.3. Decisions to be made in modelling soil, structures and foundations -- 3.3. UNCERTAINTIES -- 3.3.1. Aleatory uncertainties and epistemic uncertainties -- 3.3.2. Avoiding double counting of uncertainties -- 3.3.3. Treating uncertainties in the soil-structure interaction analyses: explicit inclusion and sensitivity studies -- 4. SITE CONFIGURATION AND SOIL PROPERTIES -- 4.1. SITE CONFIGURATION AND CHARACTERIZATION -- 4.2. SOIL BEHAVIOUR -- 4.3. EXPERIMENTAL DESCRIPTION OF SOIL BEHAVIOUR -- 4.3.1. Linear viscoelastic model -- 4.3.2. Nonlinear one-dimensional model -- 4.3.3. Nonlinear two and three-dimensional models -- 4.4. ITERATIVE LINEAR MODEL AND ITS LIMITATIONS -- 4.5. PHYSICAL PARAMETERS -- 4.6. FIELD MEASUREMENTS AND LABORATORY MEASUREMENTS -- 4.6.1. Site instrumentation -- 4.6.2. Field investigations -- 4.6.3. Laboratory measurements -- 4.6.4. Comparison of field and laboratory tests -- 4.6.5. Summary of parameters and measurement techniques -- 4.7. CALIBRATION AND VALIDATION.
4.8. UNCERTAINTIES -- 4.9. SPATIAL VARIABILITY -- 5. SEISMIC HAZARD ANALYSIS FOR NUCLEAR INSTALLATIONS -- 5.1. PSHA PERSPECTIVE -- 5.2. DSHA PERSPECTIVE -- 5.3. INTERFACES BETWEEN THE SEISMIC HAZARD ANALYSIS AND THE SOIL-STRUCTURE INTERACTION ANALYSIS TEAMS -- 6. SEISMIC WAVE FIELDS AND FREE FIELD GROUND MOTIONS -- 6.1. SEISMIC WAVE FIELDS -- 6.1.1. Perspective and spatial variability of ground motion -- 6.1.2. Spatial variability of ground motions -- 6.2. FREE FIELD GROUND MOTION DEVELOPMENT -- 6.3. RECORDED DATA -- 6.3.1. 3-D versus 1-D records/motions -- 6.3.1.1. Earthquake Ground Motions: Analytical Models -- 6.3.1.2. Earthquake Ground Motions: Numerical Models -- 6.3.2. Uncertainties -- 6.3.2.1. Uncertain sources -- 6.3.2.2. Uncertain path (rock) -- 6.3.2.3. Uncertain site (soil) -- 6.4. SEISMIC WAVE INCOHERENCE -- 6.4.1. General consideration -- 6.4.2. Incoherence modelling -- 6.4.2.1. Incoherence in 3-D -- 6.4.2.2. Theoretical Assumptions behind SVGM Models -- 6.4.2.3. Nuclear power plant - specific applications -- 7. SITE RESPONSE ANALYSIS AND SEISMIC INPUT -- 7.1. OVERVIEW -- 7.2. SITE RESPONSE ANALYSIS -- 7.2.1. Perspective -- 7.2.2. Foundation input response spectra -- 7.3. SITE RESPONSE ANALYSIS APPROACHES -- 7.3.1. Idealized site profile and wave propagation mechanisms -- 7.3.1.1. Convolution -- 7.3.1.2. Deconvolution -- 7.3.2. Non-idealized site profile and wave propagation mechanisms -- 7.3.3. Analysis models and modelling assumptions -- 7.3.3.1. D models -- 7.3.3.2. 3-D/3C versus 1-D/3C versus 1-D/1C seismic models -- 7.3.3.3. Propagation of higher frequency seismic motions -- 7.3.3.4. Material modelling and assumptions -- 7.3.3.5. 1-D/3C vs 1-D/2C vs 1-D/1C material behaviour and wave propagation models -- 7.4. STANDARD AND SITE SPECIFIC RESPONSE SPECTRA -- 7.4.1. Introduction -- 7.4.2. Standard response spectra.
7.4.3. Site specific response spectra -- 7.5. TIME HISTORIES -- 7.6. UNCERTAINTIES -- 7.7. LIMITATIONS OF TIME AND FREQUENCY DOMAIN METHODS FOR FREE FIELD GROUND MOTIONS -- 8. METHODS AND MODELS FOR Soil-Structure Interaction ANALYSIS -- 8.1. BASIC STEPS FOR SOIL-STRUCTURE INTERACTION ANALYSIS -- 8.1.1. Preparatory activities -- 8.1.2. Site specific modelling -- 8.2. DIRECT METHODS -- 8.2.1. Discrete methods -- 8.2.1.1. Finite element method -- 8.2.1.2. Finite difference method -- 8.2.2. Linear finite element methods -- 8.2.3. Nonlinear finite element methods -- 8.2.4. Inelasticity, elasto-plasticity -- 8.2.5. Dynamics solution techniques -- 8.2.6. Energy dissipation -- 8.3. SUBSTRUCTURE METHODS -- 8.3.1. Principles -- 8.3.2. Rigid or flexible boundary method -- 8.3.3. The flexible volume method -- 8.3.4. The subtraction method -- 8.3.5. SASSI: System for analysis of soil-structure interaction -- 8.3.6. CLASSI: Soil-structure interaction - A linear continuum mechanic approach -- 8.4. SOIL-STRUCTURE INTERACTION COMPUTATIONAL MODELS -- 8.4.1. Soil/rock linear and nonlinear modelling -- 8.4.2. Drained and undrained modelling -- 8.4.2.1. Drained analysis -- 8.4.2.2. Undrained analysis -- 8.4.3. Soil material modelling: linear and nonlinear elastic models -- 8.4.3.1. Elastic-plastic models -- 8.4.4. Structural models, linear and nonlinear: shells, plates, walls, beams, trusses, solids -- 8.4.5. Contact modelling -- 8.4.6. Structures with a base isolation/dissipation system -- 8.4.7. Foundation models -- 8.4.7.1. Shallow and embedded foundation slabs and walls. -- 8.4.7.2. Deep foundations (piles, caissons and shaft foundations). -- 8.4.7.3. Deeply embedded foundations. -- 8.4.7.4. Foundation flexibility and base isolator/dissipator systems. -- 8.4.8. Deeply embedded structures -- 8.4.9. Buoyancy modelling -- 8.4.10. Domain boundaries.
8.4.11. Seismic load input -- 8.4.11.1. Domain reduction method -- 8.4.12. Structure-soil-structure interaction -- 8.4.12.1. Detailed methods and models of structure-soil-structure interaction -- 8.4.12.2. Simplified models: symmetry and anti-symmetry -- 8.4.13. Simplified models -- 8.5. PROBABILISTIC RESPONSE ANALYSIS -- 8.5.1. Overview -- 8.5.2. Simulations of SSI phenomena -- 8.5.2.1. Seismic methodology analysis chain with statistics (SMACS) -- 8.5.2.2. Monte Carlo approach to modelling and analysis -- 8.5.2.3. Random vibration theory -- 8.5.2.4. Stochastic finite element method -- 8.6. LIMITATION OF NUMERICAL MODELLING -- 9. Seismic RESPONSE ASPECTS FOR DESIGN AND ASSESSMENT OF NUCLEAR INSTALLATIONS -- 9.1. OVERALL MODELLING DECISIONS -- 9.2. SOIL MODELLING -- 9.3. FREE FIELD GROUND MOTIONS -- 9.4. SITE RESPONSE ANALYSIS - APPROACHES 1, 2, 3, AND 4 -- 9.4.1. 1-D model -- 9.4.1.1. Comparison EQL / nonlinear (cases 1a-1b) -- 9.4.1.2. Total vs effective stress analyses (cases 1a-2a) -- 9.4.1.3. Vertical motion -- 9.4.1.4. Lightly damped profiles -- 9.4.2. 2-D models -- 9.4.3. The 3 X 1C approach -- 9.4.4. Real 3C motions -- Realistic three component (3C) seismic motions that are comprised of body and surface waves can be used for SSI analysis provided that the full 3C wave field of seismic motions are available. Such full wave fields can be obtained using the analytic so... -- 9.5. SOIL-STRUCTURE INTERACTION MODELS -- 9.5.1. Structure -- 9.5.1.1. Multi-step vs single step soil-structure interaction analyses -- 9.5.1.2. Structure modelling requirements -- 9.5.1.3. Decision-making -- 9.5.2. Foundations -- 9.5.2.1. Foundation modelling for conventional foundation/structure systems -- 9.5.2.2. Simplified models for conventional foundation/structure systems -- 9.5.2.3. Limitations of the substructure method -- 9.5.2.4. Deep foundations.
9.5.2.5. Embedded foundation -- 9.5.2.6. Deeply embedded foundations (SMRs) -- 9.5.3. Analysis methods -- 9.5.3.1. Substructure methods -- 9.5.3.2. Direct methods: linear, nonlinear (deeply embedded SMR, deep foundations, sliding, uplift) -- The direct method analyses the idealized soil-structure system in a single step. The direct method is applicable to linear and equivalent linear idealizations and is needed for nonlinear SSI analyses. This contrasts with the substructure method that d... -- 9.5.4. Hierarchical modelling and simulation of an inelastic soil-structure interaction system -- 9.6. INCOHERENT MOTIONS -- 9.6.1. Case study of the effects of ground motion incoherence on a nuclear power plant -- 9.7. UNCERTINITIES AND SENTIVITIY STUDIES -- 9.7.1. Ground motion -- 9.7.1.1. Specification of design basis earthquake and beyond design basis earthquake ground motion -- 9.7.1.2. Variabilities in the site specific ground motion -- 9.7.2. Soil -- 9.7.3. Structure uncertainties -- 9.7.4. Verification and validation of models -- 9.8. STRUCTURAL RESPONSE QUANTITIES -- 9.8.1. Deterministic analyses -- 9.8.1.1. Design forces, displacements, and stresses -- 9.8.1.2. Seismic input to subsystems -- 9.8.2. Probabilistic analyses -- 9.8.2.1. Step-by-step probabilistic analyses -- 9.8.2.2. Epistemic uncertainty and aleatory uncertainty -- 10. Available Software FOR Soil-Structure Interaction ANALYSIS -- 10.1. EXAMPLES ON SOFTWARE FOR USE IN SOIL-STRUCTURE INTERACTION ANALYSES FOR NUCLEAR INSTALLATIONS -- 10.1.1. Available programs for soil-structure interaction analyses -- 10.2. VERIFICATION AND VALIDATION OF SSI SOFTWARE -- 10.2.1. introduction -- 10.2.2. Importance of verification and validation -- 10.2.3. Detailed look at verification and validation -- 10.2.4. Examples of verification and validation -- REFERENCES.
CONTRIBUTORS TO DRAFTING AND REVIEW.
author_facet IAEA.
author_variant i
author_sort IAEA.
title Methodologies for Seismic Soil–Structure Interaction Analysis in the Design and Assessment of Nuclear Installations.
title_full Methodologies for Seismic Soil–Structure Interaction Analysis in the Design and Assessment of Nuclear Installations.
title_fullStr Methodologies for Seismic Soil–Structure Interaction Analysis in the Design and Assessment of Nuclear Installations.
title_full_unstemmed Methodologies for Seismic Soil–Structure Interaction Analysis in the Design and Assessment of Nuclear Installations.
title_auth Methodologies for Seismic Soil–Structure Interaction Analysis in the Design and Assessment of Nuclear Installations.
title_new Methodologies for Seismic Soil–Structure Interaction Analysis in the Design and Assessment of Nuclear Installations.
title_sort methodologies for seismic soil–structure interaction analysis in the design and assessment of nuclear installations.
series IAEA TECDOC Series ;
series2 IAEA TECDOC Series ;
publisher IAEA,
publishDate 2022
physical 1 online resource (196 pages)
edition 1st ed.
contents Intro -- 1. INTRODUCTION -- 1.1. BACKGROUND -- 1.2. OBJECTIVE -- 1.3. SCOPE -- 1.4. STRUCTURE -- 2. EVOLUtION of SOIL-STRUCTURE INTERACTION ANALYSIS, Design Considerations and Country PracticeS -- 2.1. EVOLUTION OF SOIL-STRUCTURE INTERACTION ANALYSIS -- 2.2. DESIGN CONSIDERATIONS -- 2.3. NATIONAL PRACTICES -- 2.3.1. United States of America -- 2.3.2. France -- 2.3.3. Canada -- 2.3.4. Japan -- 2.3.5. Russian Federation -- 2.3.6. European Utility Requirements -- 2.4. REQUIREMENTS AND RECOMMENDATION IN IAEA SAFETY STANDARDS -- 2.5. SIMPLE, SIMPLIFIED AND DETAILED METHODS, MODELS AND PARAMETERS -- 3. ELEMENTS OF SOIL-STRUCTURE INTERACTION ANALYSIS -- 3.1. FREE FIELD GROUND MOTION -- 3.2. MODELLING SOIL, STRUCTURES AND FOUNDATIONS -- 3.2.1. Soil for design basis and beyond design basis earthquakes -- 3.2.2. Structures and soil-structure interaction models -- 3.2.3. Decisions to be made in modelling soil, structures and foundations -- 3.3. UNCERTAINTIES -- 3.3.1. Aleatory uncertainties and epistemic uncertainties -- 3.3.2. Avoiding double counting of uncertainties -- 3.3.3. Treating uncertainties in the soil-structure interaction analyses: explicit inclusion and sensitivity studies -- 4. SITE CONFIGURATION AND SOIL PROPERTIES -- 4.1. SITE CONFIGURATION AND CHARACTERIZATION -- 4.2. SOIL BEHAVIOUR -- 4.3. EXPERIMENTAL DESCRIPTION OF SOIL BEHAVIOUR -- 4.3.1. Linear viscoelastic model -- 4.3.2. Nonlinear one-dimensional model -- 4.3.3. Nonlinear two and three-dimensional models -- 4.4. ITERATIVE LINEAR MODEL AND ITS LIMITATIONS -- 4.5. PHYSICAL PARAMETERS -- 4.6. FIELD MEASUREMENTS AND LABORATORY MEASUREMENTS -- 4.6.1. Site instrumentation -- 4.6.2. Field investigations -- 4.6.3. Laboratory measurements -- 4.6.4. Comparison of field and laboratory tests -- 4.6.5. Summary of parameters and measurement techniques -- 4.7. CALIBRATION AND VALIDATION.
4.8. UNCERTAINTIES -- 4.9. SPATIAL VARIABILITY -- 5. SEISMIC HAZARD ANALYSIS FOR NUCLEAR INSTALLATIONS -- 5.1. PSHA PERSPECTIVE -- 5.2. DSHA PERSPECTIVE -- 5.3. INTERFACES BETWEEN THE SEISMIC HAZARD ANALYSIS AND THE SOIL-STRUCTURE INTERACTION ANALYSIS TEAMS -- 6. SEISMIC WAVE FIELDS AND FREE FIELD GROUND MOTIONS -- 6.1. SEISMIC WAVE FIELDS -- 6.1.1. Perspective and spatial variability of ground motion -- 6.1.2. Spatial variability of ground motions -- 6.2. FREE FIELD GROUND MOTION DEVELOPMENT -- 6.3. RECORDED DATA -- 6.3.1. 3-D versus 1-D records/motions -- 6.3.1.1. Earthquake Ground Motions: Analytical Models -- 6.3.1.2. Earthquake Ground Motions: Numerical Models -- 6.3.2. Uncertainties -- 6.3.2.1. Uncertain sources -- 6.3.2.2. Uncertain path (rock) -- 6.3.2.3. Uncertain site (soil) -- 6.4. SEISMIC WAVE INCOHERENCE -- 6.4.1. General consideration -- 6.4.2. Incoherence modelling -- 6.4.2.1. Incoherence in 3-D -- 6.4.2.2. Theoretical Assumptions behind SVGM Models -- 6.4.2.3. Nuclear power plant - specific applications -- 7. SITE RESPONSE ANALYSIS AND SEISMIC INPUT -- 7.1. OVERVIEW -- 7.2. SITE RESPONSE ANALYSIS -- 7.2.1. Perspective -- 7.2.2. Foundation input response spectra -- 7.3. SITE RESPONSE ANALYSIS APPROACHES -- 7.3.1. Idealized site profile and wave propagation mechanisms -- 7.3.1.1. Convolution -- 7.3.1.2. Deconvolution -- 7.3.2. Non-idealized site profile and wave propagation mechanisms -- 7.3.3. Analysis models and modelling assumptions -- 7.3.3.1. D models -- 7.3.3.2. 3-D/3C versus 1-D/3C versus 1-D/1C seismic models -- 7.3.3.3. Propagation of higher frequency seismic motions -- 7.3.3.4. Material modelling and assumptions -- 7.3.3.5. 1-D/3C vs 1-D/2C vs 1-D/1C material behaviour and wave propagation models -- 7.4. STANDARD AND SITE SPECIFIC RESPONSE SPECTRA -- 7.4.1. Introduction -- 7.4.2. Standard response spectra.
7.4.3. Site specific response spectra -- 7.5. TIME HISTORIES -- 7.6. UNCERTAINTIES -- 7.7. LIMITATIONS OF TIME AND FREQUENCY DOMAIN METHODS FOR FREE FIELD GROUND MOTIONS -- 8. METHODS AND MODELS FOR Soil-Structure Interaction ANALYSIS -- 8.1. BASIC STEPS FOR SOIL-STRUCTURE INTERACTION ANALYSIS -- 8.1.1. Preparatory activities -- 8.1.2. Site specific modelling -- 8.2. DIRECT METHODS -- 8.2.1. Discrete methods -- 8.2.1.1. Finite element method -- 8.2.1.2. Finite difference method -- 8.2.2. Linear finite element methods -- 8.2.3. Nonlinear finite element methods -- 8.2.4. Inelasticity, elasto-plasticity -- 8.2.5. Dynamics solution techniques -- 8.2.6. Energy dissipation -- 8.3. SUBSTRUCTURE METHODS -- 8.3.1. Principles -- 8.3.2. Rigid or flexible boundary method -- 8.3.3. The flexible volume method -- 8.3.4. The subtraction method -- 8.3.5. SASSI: System for analysis of soil-structure interaction -- 8.3.6. CLASSI: Soil-structure interaction - A linear continuum mechanic approach -- 8.4. SOIL-STRUCTURE INTERACTION COMPUTATIONAL MODELS -- 8.4.1. Soil/rock linear and nonlinear modelling -- 8.4.2. Drained and undrained modelling -- 8.4.2.1. Drained analysis -- 8.4.2.2. Undrained analysis -- 8.4.3. Soil material modelling: linear and nonlinear elastic models -- 8.4.3.1. Elastic-plastic models -- 8.4.4. Structural models, linear and nonlinear: shells, plates, walls, beams, trusses, solids -- 8.4.5. Contact modelling -- 8.4.6. Structures with a base isolation/dissipation system -- 8.4.7. Foundation models -- 8.4.7.1. Shallow and embedded foundation slabs and walls. -- 8.4.7.2. Deep foundations (piles, caissons and shaft foundations). -- 8.4.7.3. Deeply embedded foundations. -- 8.4.7.4. Foundation flexibility and base isolator/dissipator systems. -- 8.4.8. Deeply embedded structures -- 8.4.9. Buoyancy modelling -- 8.4.10. Domain boundaries.
8.4.11. Seismic load input -- 8.4.11.1. Domain reduction method -- 8.4.12. Structure-soil-structure interaction -- 8.4.12.1. Detailed methods and models of structure-soil-structure interaction -- 8.4.12.2. Simplified models: symmetry and anti-symmetry -- 8.4.13. Simplified models -- 8.5. PROBABILISTIC RESPONSE ANALYSIS -- 8.5.1. Overview -- 8.5.2. Simulations of SSI phenomena -- 8.5.2.1. Seismic methodology analysis chain with statistics (SMACS) -- 8.5.2.2. Monte Carlo approach to modelling and analysis -- 8.5.2.3. Random vibration theory -- 8.5.2.4. Stochastic finite element method -- 8.6. LIMITATION OF NUMERICAL MODELLING -- 9. Seismic RESPONSE ASPECTS FOR DESIGN AND ASSESSMENT OF NUCLEAR INSTALLATIONS -- 9.1. OVERALL MODELLING DECISIONS -- 9.2. SOIL MODELLING -- 9.3. FREE FIELD GROUND MOTIONS -- 9.4. SITE RESPONSE ANALYSIS - APPROACHES 1, 2, 3, AND 4 -- 9.4.1. 1-D model -- 9.4.1.1. Comparison EQL / nonlinear (cases 1a-1b) -- 9.4.1.2. Total vs effective stress analyses (cases 1a-2a) -- 9.4.1.3. Vertical motion -- 9.4.1.4. Lightly damped profiles -- 9.4.2. 2-D models -- 9.4.3. The 3 X 1C approach -- 9.4.4. Real 3C motions -- Realistic three component (3C) seismic motions that are comprised of body and surface waves can be used for SSI analysis provided that the full 3C wave field of seismic motions are available. Such full wave fields can be obtained using the analytic so... -- 9.5. SOIL-STRUCTURE INTERACTION MODELS -- 9.5.1. Structure -- 9.5.1.1. Multi-step vs single step soil-structure interaction analyses -- 9.5.1.2. Structure modelling requirements -- 9.5.1.3. Decision-making -- 9.5.2. Foundations -- 9.5.2.1. Foundation modelling for conventional foundation/structure systems -- 9.5.2.2. Simplified models for conventional foundation/structure systems -- 9.5.2.3. Limitations of the substructure method -- 9.5.2.4. Deep foundations.
9.5.2.5. Embedded foundation -- 9.5.2.6. Deeply embedded foundations (SMRs) -- 9.5.3. Analysis methods -- 9.5.3.1. Substructure methods -- 9.5.3.2. Direct methods: linear, nonlinear (deeply embedded SMR, deep foundations, sliding, uplift) -- The direct method analyses the idealized soil-structure system in a single step. The direct method is applicable to linear and equivalent linear idealizations and is needed for nonlinear SSI analyses. This contrasts with the substructure method that d... -- 9.5.4. Hierarchical modelling and simulation of an inelastic soil-structure interaction system -- 9.6. INCOHERENT MOTIONS -- 9.6.1. Case study of the effects of ground motion incoherence on a nuclear power plant -- 9.7. UNCERTINITIES AND SENTIVITIY STUDIES -- 9.7.1. Ground motion -- 9.7.1.1. Specification of design basis earthquake and beyond design basis earthquake ground motion -- 9.7.1.2. Variabilities in the site specific ground motion -- 9.7.2. Soil -- 9.7.3. Structure uncertainties -- 9.7.4. Verification and validation of models -- 9.8. STRUCTURAL RESPONSE QUANTITIES -- 9.8.1. Deterministic analyses -- 9.8.1.1. Design forces, displacements, and stresses -- 9.8.1.2. Seismic input to subsystems -- 9.8.2. Probabilistic analyses -- 9.8.2.1. Step-by-step probabilistic analyses -- 9.8.2.2. Epistemic uncertainty and aleatory uncertainty -- 10. Available Software FOR Soil-Structure Interaction ANALYSIS -- 10.1. EXAMPLES ON SOFTWARE FOR USE IN SOIL-STRUCTURE INTERACTION ANALYSES FOR NUCLEAR INSTALLATIONS -- 10.1.1. Available programs for soil-structure interaction analyses -- 10.2. VERIFICATION AND VALIDATION OF SSI SOFTWARE -- 10.2.1. introduction -- 10.2.2. Importance of verification and validation -- 10.2.3. Detailed look at verification and validation -- 10.2.4. Examples of verification and validation -- REFERENCES.
CONTRIBUTORS TO DRAFTING AND REVIEW.
isbn 9789201430212
9789201431219
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6891126
illustrated Not Illustrated
oclc_num 1302009050
work_keys_str_mv AT iaea methodologiesforseismicsoilx2013structureinteractionanalysisinthedesignandassessmentofnuclearinstallations
status_str n
ids_txt_mv (MiAaPQ)5006891126
(Au-PeEL)EBL6891126
(OCoLC)1302009050
carrierType_str_mv cr
hierarchy_parent_title IAEA TECDOC Series ; v.1990
is_hierarchy_title Methodologies for Seismic Soil–Structure Interaction Analysis in the Design and Assessment of Nuclear Installations.
container_title IAEA TECDOC Series ; v.1990
_version_ 1792331062240608256
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11057nam a22004453i 4500</leader><controlfield tag="001">5006891126</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073845.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2022 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789201430212</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789201431219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006891126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6891126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1302009050</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">IAEA.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methodologies for Seismic Soil&amp;#x2013;Structure Interaction Analysis in the Design and Assessment of Nuclear Installations.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Vienna :</subfield><subfield code="b">IAEA,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">{copy}2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (196 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">IAEA TECDOC Series ;</subfield><subfield code="v">v.1990</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- 1. INTRODUCTION -- 1.1. BACKGROUND -- 1.2. OBJECTIVE -- 1.3. SCOPE -- 1.4. STRUCTURE -- 2. EVOLUtION of SOIL-STRUCTURE INTERACTION ANALYSIS, Design Considerations and Country PracticeS -- 2.1. EVOLUTION OF SOIL-STRUCTURE INTERACTION ANALYSIS -- 2.2. DESIGN CONSIDERATIONS -- 2.3. NATIONAL PRACTICES -- 2.3.1. United States of America -- 2.3.2. France -- 2.3.3. Canada -- 2.3.4. Japan -- 2.3.5. Russian Federation -- 2.3.6. European Utility Requirements -- 2.4. REQUIREMENTS AND RECOMMENDATION IN IAEA SAFETY STANDARDS -- 2.5. SIMPLE, SIMPLIFIED AND DETAILED METHODS, MODELS AND PARAMETERS -- 3. ELEMENTS OF SOIL-STRUCTURE INTERACTION ANALYSIS -- 3.1. FREE FIELD GROUND MOTION -- 3.2. MODELLING SOIL, STRUCTURES AND FOUNDATIONS -- 3.2.1. Soil for design basis and beyond design basis earthquakes -- 3.2.2. Structures and soil-structure interaction models -- 3.2.3. Decisions to be made in modelling soil, structures and foundations -- 3.3. UNCERTAINTIES -- 3.3.1. Aleatory uncertainties and epistemic uncertainties -- 3.3.2. Avoiding double counting of uncertainties -- 3.3.3. Treating uncertainties in the soil-structure interaction analyses: explicit inclusion and sensitivity studies -- 4. SITE CONFIGURATION AND SOIL PROPERTIES -- 4.1. SITE CONFIGURATION AND CHARACTERIZATION -- 4.2. SOIL BEHAVIOUR -- 4.3. EXPERIMENTAL DESCRIPTION OF SOIL BEHAVIOUR -- 4.3.1. Linear viscoelastic model -- 4.3.2. Nonlinear one-dimensional model -- 4.3.3. Nonlinear two and three-dimensional models -- 4.4. ITERATIVE LINEAR MODEL AND ITS LIMITATIONS -- 4.5. PHYSICAL PARAMETERS -- 4.6. FIELD MEASUREMENTS AND LABORATORY MEASUREMENTS -- 4.6.1. Site instrumentation -- 4.6.2. Field investigations -- 4.6.3. Laboratory measurements -- 4.6.4. Comparison of field and laboratory tests -- 4.6.5. Summary of parameters and measurement techniques -- 4.7. CALIBRATION AND VALIDATION.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.8. UNCERTAINTIES -- 4.9. SPATIAL VARIABILITY -- 5. SEISMIC HAZARD ANALYSIS FOR NUCLEAR INSTALLATIONS -- 5.1. PSHA PERSPECTIVE -- 5.2. DSHA PERSPECTIVE -- 5.3. INTERFACES BETWEEN THE SEISMIC HAZARD ANALYSIS AND THE SOIL-STRUCTURE INTERACTION ANALYSIS TEAMS -- 6. SEISMIC WAVE FIELDS AND FREE FIELD GROUND MOTIONS -- 6.1. SEISMIC WAVE FIELDS -- 6.1.1. Perspective and spatial variability of ground motion -- 6.1.2. Spatial variability of ground motions -- 6.2. FREE FIELD GROUND MOTION DEVELOPMENT -- 6.3. RECORDED DATA -- 6.3.1. 3-D versus 1-D records/motions -- 6.3.1.1. Earthquake Ground Motions: Analytical Models -- 6.3.1.2. Earthquake Ground Motions: Numerical Models -- 6.3.2. Uncertainties -- 6.3.2.1. Uncertain sources -- 6.3.2.2. Uncertain path (rock) -- 6.3.2.3. Uncertain site (soil) -- 6.4. SEISMIC WAVE INCOHERENCE -- 6.4.1. General consideration -- 6.4.2. Incoherence modelling -- 6.4.2.1. Incoherence in 3-D -- 6.4.2.2. Theoretical Assumptions behind SVGM Models -- 6.4.2.3. Nuclear power plant - specific applications -- 7. SITE RESPONSE ANALYSIS AND SEISMIC INPUT -- 7.1. OVERVIEW -- 7.2. SITE RESPONSE ANALYSIS -- 7.2.1. Perspective -- 7.2.2. Foundation input response spectra -- 7.3. SITE RESPONSE ANALYSIS APPROACHES -- 7.3.1. Idealized site profile and wave propagation mechanisms -- 7.3.1.1. Convolution -- 7.3.1.2. Deconvolution -- 7.3.2. Non-idealized site profile and wave propagation mechanisms -- 7.3.3. Analysis models and modelling assumptions -- 7.3.3.1. D models -- 7.3.3.2. 3-D/3C versus 1-D/3C versus 1-D/1C seismic models -- 7.3.3.3. Propagation of higher frequency seismic motions -- 7.3.3.4. Material modelling and assumptions -- 7.3.3.5. 1-D/3C vs 1-D/2C vs 1-D/1C material behaviour and wave propagation models -- 7.4. STANDARD AND SITE SPECIFIC RESPONSE SPECTRA -- 7.4.1. Introduction -- 7.4.2. Standard response spectra.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.4.3. Site specific response spectra -- 7.5. TIME HISTORIES -- 7.6. UNCERTAINTIES -- 7.7. LIMITATIONS OF TIME AND FREQUENCY DOMAIN METHODS FOR FREE FIELD GROUND MOTIONS -- 8. METHODS AND MODELS FOR Soil-Structure Interaction ANALYSIS -- 8.1. BASIC STEPS FOR SOIL-STRUCTURE INTERACTION ANALYSIS -- 8.1.1. Preparatory activities -- 8.1.2. Site specific modelling -- 8.2. DIRECT METHODS -- 8.2.1. Discrete methods -- 8.2.1.1. Finite element method -- 8.2.1.2. Finite difference method -- 8.2.2. Linear finite element methods -- 8.2.3. Nonlinear finite element methods -- 8.2.4. Inelasticity, elasto-plasticity -- 8.2.5. Dynamics solution techniques -- 8.2.6. Energy dissipation -- 8.3. SUBSTRUCTURE METHODS -- 8.3.1. Principles -- 8.3.2. Rigid or flexible boundary method -- 8.3.3. The flexible volume method -- 8.3.4. The subtraction method -- 8.3.5. SASSI: System for analysis of soil-structure interaction -- 8.3.6. CLASSI: Soil-structure interaction - A linear continuum mechanic approach -- 8.4. SOIL-STRUCTURE INTERACTION COMPUTATIONAL MODELS -- 8.4.1. Soil/rock linear and nonlinear modelling -- 8.4.2. Drained and undrained modelling -- 8.4.2.1. Drained analysis -- 8.4.2.2. Undrained analysis -- 8.4.3. Soil material modelling: linear and nonlinear elastic models -- 8.4.3.1. Elastic-plastic models -- 8.4.4. Structural models, linear and nonlinear: shells, plates, walls, beams, trusses, solids -- 8.4.5. Contact modelling -- 8.4.6. Structures with a base isolation/dissipation system -- 8.4.7. Foundation models -- 8.4.7.1. Shallow and embedded foundation slabs and walls. -- 8.4.7.2. Deep foundations (piles, caissons and shaft foundations). -- 8.4.7.3. Deeply embedded foundations. -- 8.4.7.4. Foundation flexibility and base isolator/dissipator systems. -- 8.4.8. Deeply embedded structures -- 8.4.9. Buoyancy modelling -- 8.4.10. Domain boundaries.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.4.11. Seismic load input -- 8.4.11.1. Domain reduction method -- 8.4.12. Structure-soil-structure interaction -- 8.4.12.1. Detailed methods and models of structure-soil-structure interaction -- 8.4.12.2. Simplified models: symmetry and anti-symmetry -- 8.4.13. Simplified models -- 8.5. PROBABILISTIC RESPONSE ANALYSIS -- 8.5.1. Overview -- 8.5.2. Simulations of SSI phenomena -- 8.5.2.1. Seismic methodology analysis chain with statistics (SMACS) -- 8.5.2.2. Monte Carlo approach to modelling and analysis -- 8.5.2.3. Random vibration theory -- 8.5.2.4. Stochastic finite element method -- 8.6. LIMITATION OF NUMERICAL MODELLING -- 9. Seismic RESPONSE ASPECTS FOR DESIGN AND ASSESSMENT OF NUCLEAR INSTALLATIONS -- 9.1. OVERALL MODELLING DECISIONS -- 9.2. SOIL MODELLING -- 9.3. FREE FIELD GROUND MOTIONS -- 9.4. SITE RESPONSE ANALYSIS - APPROACHES 1, 2, 3, AND 4 -- 9.4.1. 1-D model -- 9.4.1.1. Comparison EQL / nonlinear (cases 1a-1b) -- 9.4.1.2. Total vs effective stress analyses (cases 1a-2a) -- 9.4.1.3. Vertical motion -- 9.4.1.4. Lightly damped profiles -- 9.4.2. 2-D models -- 9.4.3. The 3 X 1C approach -- 9.4.4. Real 3C motions -- Realistic three component (3C) seismic motions that are comprised of body and surface waves can be used for SSI analysis provided that the full 3C wave field of seismic motions are available. Such full wave fields can be obtained using the analytic so... -- 9.5. SOIL-STRUCTURE INTERACTION MODELS -- 9.5.1. Structure -- 9.5.1.1. Multi-step vs single step soil-structure interaction analyses -- 9.5.1.2. Structure modelling requirements -- 9.5.1.3. Decision-making -- 9.5.2. Foundations -- 9.5.2.1. Foundation modelling for conventional foundation/structure systems -- 9.5.2.2. Simplified models for conventional foundation/structure systems -- 9.5.2.3. Limitations of the substructure method -- 9.5.2.4. Deep foundations.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.5.2.5. Embedded foundation -- 9.5.2.6. Deeply embedded foundations (SMRs) -- 9.5.3. Analysis methods -- 9.5.3.1. Substructure methods -- 9.5.3.2. Direct methods: linear, nonlinear (deeply embedded SMR, deep foundations, sliding, uplift) -- The direct method analyses the idealized soil-structure system in a single step. The direct method is applicable to linear and equivalent linear idealizations and is needed for nonlinear SSI analyses. This contrasts with the substructure method that d... -- 9.5.4. Hierarchical modelling and simulation of an inelastic soil-structure interaction system -- 9.6. INCOHERENT MOTIONS -- 9.6.1. Case study of the effects of ground motion incoherence on a nuclear power plant -- 9.7. UNCERTINITIES AND SENTIVITIY STUDIES -- 9.7.1. Ground motion -- 9.7.1.1. Specification of design basis earthquake and beyond design basis earthquake ground motion -- 9.7.1.2. Variabilities in the site specific ground motion -- 9.7.2. Soil -- 9.7.3. Structure uncertainties -- 9.7.4. Verification and validation of models -- 9.8. STRUCTURAL RESPONSE QUANTITIES -- 9.8.1. Deterministic analyses -- 9.8.1.1. Design forces, displacements, and stresses -- 9.8.1.2. Seismic input to subsystems -- 9.8.2. Probabilistic analyses -- 9.8.2.1. Step-by-step probabilistic analyses -- 9.8.2.2. Epistemic uncertainty and aleatory uncertainty -- 10. Available Software FOR Soil-Structure Interaction ANALYSIS -- 10.1. EXAMPLES ON SOFTWARE FOR USE IN SOIL-STRUCTURE INTERACTION ANALYSES FOR NUCLEAR INSTALLATIONS -- 10.1.1. Available programs for soil-structure interaction analyses -- 10.2. VERIFICATION AND VALIDATION OF SSI SOFTWARE -- 10.2.1. introduction -- 10.2.2. Importance of verification and validation -- 10.2.3. Detailed look at verification and validation -- 10.2.4. Examples of verification and validation -- REFERENCES.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">CONTRIBUTORS TO DRAFTING AND REVIEW.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">IAEA</subfield><subfield code="t">Methodologies for Seismic Soil&amp;#x2013;Structure Interaction Analysis in the Design and Assessment of Nuclear Installations</subfield><subfield code="d">Vienna : IAEA,c2022</subfield><subfield code="z">9789201431219</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">IAEA TECDOC Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6891126</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>