Makers at School, Educational Robotics and Innovative Learning Environments : : Research and Experiences from FabLearn Italy 2019, in the Italian Schools and Beyond.

Saved in:
Bibliographic Details
Superior document:Lecture Notes in Networks and Systems Series ; v.240
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Lecture Notes in Networks and Systems Series
Online Access:
Physical Description:1 online resource (364 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Introduction
  • Contents
  • Introduction to the Main Topics
  • Perspectives for School: Maker Approach, Educational Technologies and Laboratory Approach, New Learning Spaces
  • 1 Introduction
  • 2 Maker Dimension
  • 3 Trends and Perspectives
  • 3.1 Experiences and Points of View
  • 4 Conclusions
  • References
  • Making: Laboratory and Active Learning Perspectives
  • 1 Introduction
  • 2 Making as a Bridge Between Pedagogical Tradition and Technological Innovation
  • 3 Technology, People, Society
  • 3.1 Experiences and Point of View
  • 4 Conclusions
  • References
  • Robotics in Education: A Smart and Innovative Approach to the Challenges of the 21st Century
  • 1 Introduction
  • 2 Robotics in Education
  • 3 Trends and Perspectives
  • 3.1 Good Practices
  • 3.2 Assessment
  • 3.3 Technological Development
  • 4 Conclusions
  • References
  • Innovative Spaces at School. How Innovative Spaces and the Learning Environment Condition the Transformation of Teaching
  • 1 Introduction
  • 2 The Topic: A Dialogue Between Architecture and Pedagogy
  • 3 Trends and Perspectives
  • 3.1 Experiences and Points of View
  • 4 Conclusions
  • References
  • Keynotes
  • Makers in Education: Teaching is a Hacking Stuff
  • 1 Problems and Goals
  • 1.1 Troubleshooting
  • 1.2 Changing the Paradigm
  • 2 A Maker in Education
  • 2.1 A Quantum Leap
  • 2.2 What is an Edumaker (Maker in Education)?
  • 3 Experience of a Maker in Education
  • 3.1 Co-m@kingLAB
  • 4 Conclusions
  • References
  • If We Could Start from Scratch, What Would Schools Look like in the Twenty-First Century? Rethinking Schools as a Locus for Social Change
  • 1 Introduction: How Do Educational Systems Get Built?
  • 2 What is Our Vision for the Future?
  • 3 Sobral, Brazil: Examples of Possible Change
  • 4 Three Mistakes in Progressive Education.
  • 5 The Future of Education Looks like the Present of Makerspaces
  • 6 Conclusion: The Ethos of Our Time
  • References
  • From Classroom to Learning Environment
  • References
  • Pedagogical Considerations for Technology-Enhanced Learning
  • 1 Introduction
  • 2 Technology-Enhanced Learning
  • 3 Pedagogical Considerations
  • References
  • School Makerspace Manifesto
  • 1 Why a Makerspace Manifesto for Primary and Lower Secondary Schools
  • 2 The Potential Relationship Between Schools and Makers
  • 2.1 What is a Maker?
  • 3 Three Principles on Which Makers and Active Schools Can Agree Before Building a Makerspace
  • 3.1 Recognizing the world's Complexity
  • 3.2 Showcasing Knowledge
  • 3.3 Interacting with the Environment and Objects
  • 4 Starting Point and Sustainable Model
  • 5 Why a Makerspace? Because It is a Disruptive Way to Make Change
  • References
  • Elements of Roboethics
  • 1 The Birth of Roboethics
  • 2 A New Science?
  • 3 What Ethics Should Be Applied in Roboethics?
  • 4 Emerging and Novel Roboethical Issues
  • 5 The Risk of Unintended Machine-Learning Bias
  • 6 Ethical Guidelines for All Robots
  • 7 Representation of Robots with the General Public and Agnotology Issues
  • 8 Conclusions
  • References
  • Making to Learn. The Pedagogical Implications of Making in a Digital Binary World
  • 1 Introduction
  • 2 Beyond Making as a Mere Manual Activity
  • 3 Unlocking the Digital Box: Making to Learn
  • 4 Conclusion
  • References
  • The Game of Thinking. Interactions Between Children and Robots in Educational Environments
  • 1 Laboratory Approach and Educational Robotics
  • 2 Towards the Game of Thinking in Primary Schools
  • 2.1 Considerations on Experimental Adequacy and Refining the Setting
  • 2.2 Drawing Theoretical Conclusions and Identifying Alternative Explanations
  • 3 Robotic Labs and Different ER Approaches of Teachers.
  • 3.1 Programming a Robot with Preschool Children at "Bambini Bicocca" Infant School
  • 4 Conclusions
  • References
  • Maker Spaces and Fablabs at School: A Maker Approach to Teaching and Learning
  • Furniture Design Education with 3D Printing Technology
  • 1 Introduction
  • 1.1 Design with 3D Printing Technology
  • 2 Furniture Design Studio with 3D Printing Technology
  • 3 Conclusion
  • References
  • Makerspaces for Innovation in Teaching Practices
  • 1 Introduction
  • 2 Methodology
  • 3 Objectives
  • 4 Expected Results and Impact
  • 5 Monitoring and Evaluation
  • References
  • Montessori Creativity Space: Making a Space for Creativity
  • 1 Introduction
  • 2 The Context
  • 3 Work Method
  • 4 Relationship Between Space, Technologies, Teaching and Learning Practices
  • 5 Conclusion
  • References
  • Fab the Knowledge
  • 1 Introduction
  • 1.1 Making and Prototyping in Contemporary Design Domains
  • 1.2 The Research Through Co-design Co-model
  • 2 Methodological Approach
  • 3 Results and Discussion
  • 4 Conclusions
  • References
  • Teaching Environmental Education Using an Augmented Reality World Map
  • 1 Introduction
  • 1.1 Profile of School and Students
  • 1.2 Description of the Workshop With Students
  • 1.3 Grade Level-Age of Students
  • 1.4 Material/Resources
  • 1.5 Interdisciplinary and Constructivist Approach
  • 1.6 Parental Involvement
  • 1.7 Active Citizenship
  • 1.8 Data Collection
  • 2 Findings
  • 2.1 Use of Digital Literacy and Citizenship Resources
  • 2.2 Course: Study of the Environment
  • 2.3 Successes
  • 2.4 Challenges
  • 2.5 Comments and Feedback
  • References
  • Laboratory Teaching with the Makers Approach: Models, Methods and Instruments
  • The Maker Movement: From the Development of a Theoretical Reference Framework to the Experience of DENSA Coop. Soc
  • 1 Introduction. Children, Makers, Key Competences.
  • 2 Community and Participation: Makerspace and Social Inclusion
  • 3 Key Competences and Active Citizenship
  • 4 The Experience of DENSA Coop. Soc
  • 5 Conclusions
  • References
  • Chesscards: Making a Paper Chess Game with Primary School Students, a Cooperative Approach
  • 1 Introduction
  • 2 Making Chesscards
  • 3 Outputs
  • References
  • A New Graphic User Interface Design for 3D Modeling Software for Children
  • 1 Context
  • 1.1 Digital Natives and ITC
  • 1.2 School Education and Learning for Digital Natives
  • 1.3 A New Teaching Methodology: Maker Pedagogy
  • 2 The Aim of the Research
  • 3 Research Method
  • 3.1 Child-Centered Design
  • 3.2 Analysis
  • 4 The Project: "SugarCad Kids"
  • 4.1 Wireframe and Logo
  • 4.2 Graphic User Interface for Children (3-7-Year-Old)
  • 5 Conclusion
  • References
  • Museum Education Between Digital Technologies and Unplugged Processes. Two Case Studies
  • 1 Introduction
  • 2 Museum Display for Science Popularization
  • 2.1 Video Floor Installation Showing Symmetries in Motion
  • 2.2 Extended Museum of Cosmati Floors. Educational Kit
  • 3 Museum Education. Prototyping Educational Kits with 3D Printing in the School Fab Lab
  • 3.1 Creative Geometry Kits: Detachable 3D-Printed Apollonius's Cone
  • 3.2 ART-TOUCH-LAB. Tactile Kits Made with a 3D Printer
  • References
  • Officina Degli Errori: An Extended Experiment to Bring Constructionist Approaches to Public Schools in Bologna
  • 1 Introduction
  • 2 Values, Aims and First Round of Co-design
  • 3 Officina Degli Errori: Tinkering Goes to School
  • 4 Conclusions and Future Prospects
  • References
  • Service Learning: A Proposal for the Maker Approach
  • 1 Service Learning, Coding and Digital Storytelling: A Methodological Proposal
  • 2 The Maker Movement Approach and Coding
  • 2.1 Phase 1: "Welcome" App Prototype
  • 2.2 Phase 2: The "Welcome" App
  • 3 Objectives.
  • 3.1 Service Learning Objectives for Students
  • 3.2 Curricular Objectives and Key Competences
  • 3.3 Expected Results
  • 4 Conclusion
  • References
  • Learning by Making. 3D Printing Guidelines for Teachers
  • 1 Introduction
  • 2 Fused Deposition Modeling (FDM) 3D Printers
  • 3 Stereo Lithography Apparatus (SLA) 3D Printers
  • 4 FDM Versus SLA: A Comparison for the Teaching Setting
  • 5 Conclusion
  • References
  • Roboticsness-Gymnasium Mentis
  • 1 The Project: LEIS Classroom
  • 1.1 Goals
  • 1.2 Teaching Methods and Strategies
  • 1.3 Cooperative Learning and Cooperative Teaching
  • 2 Experiences
  • 2.1 Curricular Robotics for First-Year Students (Aged 14-15, Science-Based High School)
  • 2.2 STEM
  • 2.3 Participation in Exhibitions and Fairs
  • 3 Results and Conclusions
  • References
  • Curricular and Not Curricular Robotics in Formal, Non-formal and Informal Education
  • Educational Robotics and Social Relationships in the Classroom
  • 1 Introduction
  • 2 Materials and Methods
  • 2.1 Participants and Procedure
  • 2.2 Methodology
  • 3 Results
  • 4 Conclusion and Future Work
  • References
  • Analysis of Educational Robotics Activities Using a Machine Learning Approach
  • 1 Introduction
  • 2 Methods
  • 2.1 Procedure and Participants
  • 2.2 The Introductory Exercise
  • 2.3 Data Preparation
  • 3 Results
  • 4 Conclusions
  • Appendix
  • References
  • Learning Platforms in the Context of the Digitization of Education: A Strong Methodological Innovation. The Experience of Latvia
  • 1 Terminology in the Field of Digital Learning
  • 2 Teaching Conditions in Digital Learning Environments
  • 3 Methodology
  • 4 Learning Platform Evaluation Tool
  • 5 Research Results
  • 5.1 Teachers Who Use Learning Platforms (N 573) Do So
  • 5.2 Teachers Who Do not Use Learning Platforms in the Learning Process (N 79) Give These Reasons.
  • 5.3 The Results from the Statistics on the Uzdevumi.Lv Learning Platform Show That.