Sublinear Computation Paradigm : : Algorithmic Revolution in the Big Data Era.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2021.
Ã2022.
Year of Publication:2021
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (403 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006787726
ctrlnum (MiAaPQ)5006787726
(Au-PeEL)EBL6787726
(OCoLC)1314627511
collection bib_alma
record_format marc
spelling Katoh, Naoki.
Sublinear Computation Paradigm : Algorithmic Revolution in the Big Data Era.
1st ed.
Singapore : Springer Singapore Pte. Limited, 2021.
Ã2022.
1 online resource (403 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Preface -- Contents -- Part I Introduction -- 1 What Is the Sublinear Computation Paradigm? -- 1.1 We Are in the Era of Big Data -- 1.2 Theory of Computational Complexity and Polynomial-Time Algorithms -- 1.3 Polynomial-Time Algorithms and Sublinear-Time Algorithms -- 1.3.1 A Brief History of Polynomial-Time Algorithms -- 1.3.2 Emergence of Sublinear-Time Algorithms -- 1.3.3 Property Testing and Parameter Testing -- 1.4 Ways to Decrease Computational Resources -- 1.4.1 Streaming Algorithms -- 1.4.2 Compression -- 1.4.3 Succinct Data Structures -- 1.5 Need for the Sublinear Computation Paradigm -- 1.5.1 Sublinear and Polynomial Computation Are Both Important -- 1.5.2 Research Project ABD -- 1.5.3 The Organization of This Book -- References -- Part II Sublinear Algorithms -- 2 Property Testing on Graphs and Games -- 2.1 Introduction -- 2.2 Basic Terms and Definitions for Property Testing -- 2.2.1 Graphs and the Three Models for Property Testing -- 2.2.2 Properties, Distances, and Testers -- 2.3 Important Known Results in Property Testing on Graphs -- 2.3.1 Results for the Dense-Graph Model -- 2.3.2 Results for the Bounded-Degree Model -- 2.3.3 Results for the General-Graph Model -- 2.4 Characterization of Testability on Bounded-Degree Digraphs -- 2.4.1 Bounded-Degree Model of Digraphs -- 2.4.2 Monotone Properties and Hereditary Properties -- 2.4.3 Characterizations -- 2.4.4 An Idea to Extend the Characterizations Beyond Monotone and Hereditary -- 2.5 Testable EXPTIME-Complete Games -- 2.5.1 Definitions -- 2.5.2 Testers for Generalized Chess, Shogi, and Xiangqi -- 2.6 Summary -- References -- 3 Constant-Time Algorithms for Continuous Optimization Problems -- 3.1 Introduction -- 3.2 Graph Limit Theory -- 3.3 Quadratic Function Minimization -- 3.3.1 Proof of Theorem 3.1 -- 3.4 Tensor Decomposition -- 3.4.1 Preliminaries.
3.4.2 Proof of Theorem 3.2 -- 3.4.3 Proof of Lemma 3.4 -- 3.4.4 Proof of Lemma 3.5 -- References -- 4 Oracle-Based Primal-Dual Algorithms for Packing and Covering Semidefinite Programs -- 4.1 Packing and Covering Semidefinite Programs -- 4.2 Applications -- 4.2.1 SDP relaxation for Robust MaxCut -- 4.2.2 Mahalanobis Distance Learning -- 4.2.3 Related Work -- 4.3 General Framework for Packing-Covering SDPs -- 4.4 Scalar Algorithms -- 4.4.1 Scalar MWU Algorithm for (Packing-I)-(Covering-I) -- 4.4.2 Scalar Logarithmic Potential Algorithm For (Packing-I)-(Covering-I) -- 4.5 Matrix Algorithms -- 4.5.1 Matrix MWU Algorithm For (Covering-II)-(Packing-II) -- 4.5.2 Matrix Logarithmic Potential Algorithm For (Packing-I)-(Covering-I) -- 4.5.3 Matrix Logarithmic Potential Algorithm For (Packing-II)-(Covering-II) -- References -- 5 Almost Linear Time Algorithms for Some Problems on Dynamic Flow Networks -- 5.1 Introduction -- 5.2 Preliminaries -- 5.3 Objective Functions -- 5.3.1 Objective Functions for the 1-Sink Problem -- 5.3.2 Objective Functions for k-Sink -- 5.4 Minmax k-Sink Problems on Paths -- 5.4.1 Feasibility Test -- 5.4.2 Solving the 1-Sink Problem -- 5.4.3 Parametric Search Method -- 5.4.4 Sorted Matrix Method -- 5.5 Minsum k-Sink Problems on Paths -- 5.5.1 Property of Aggregate Evacuation Time -- 5.5.2 Concave Monge Property -- References -- Part III Sublinear Data Structures -- 6 Information Processing on Compressed Data -- 6.1 Restructuring Compressed Data -- 6.1.1 Preliminaries -- 6.1.2 RLBWT to LZ77 -- 6.1.3 Recompression on Grammar Compression -- 6.2 Privacy-Preserving Similarity Computation -- 6.2.1 Related Work -- 6.2.2 Edit Distance with Moves -- 6.2.3 Homomorphic Encryption -- 6.2.4 L2HE-Based Algorithm for Secure EDM -- 6.2.5 Result and Open Question -- References -- 7 Compression and Pattern Matching -- 7.1 Introduction.
7.2 History of Compressed Pattern Matching Research -- 7.3 Preliminaries -- 7.3.1 Definitions of Notation and Terms -- 7.3.2 Grammar Compression -- 7.4 Framework for Compressed Pattern Matching -- 7.4.1 KMP Method -- 7.4.2 Collage System -- 7.4.3 Pattern Matching on Collage Systems -- 7.5 Repair-VF -- 7.5.1 RePair -- 7.5.2 Outline of Repair-VF -- 7.6 MR-Repair -- 7.6.1 Maximal Repeats -- 7.6.2 MR Order -- 7.6.3 Algorithm -- 7.7 Conclusion -- References -- 8 Orthogonal Range Search Data Structures -- 8.1 Introduction -- 8.1.1 Existing Work -- 8.1.2 Our Results -- 8.2 Preliminaries -- 8.2.1 Succinct Data Structures and Information-Theoretic Lower Bound -- 8.2.2 Assumptions on Point Sets -- 8.3 kd-Tree -- 8.3.1 Construction of kd-Trees -- 8.3.2 Range Search Algorithm -- 8.3.3 Complexity Analyses -- 8.4 Wavelet Tree -- 8.4.1 Construction -- 8.4.2 Range Search Algorithm -- 8.4.3 Complexity Analyses -- 8.5 Proposed Data Structure 1: Improved Query Time Complexity -- 8.5.1 Idea for Improving the Time Complexity of the kd-Tree -- 8.5.2 Index Construction -- 8.5.3 Range Search Algorithm -- 8.5.4 Complexity Analyses -- 8.6 Proposed Data Structure 2: Succinct and Practically Fast -- 8.6.1 Index Construction -- 8.6.2 Range Search Algorithm -- 8.6.3 Complexity Analyses -- 8.7 Conclusion -- References -- 9 Enhanced RAM Simulation in Succinct Space -- 9.1 Introduction -- 9.2 Oblivious RAM -- 9.2.1 Problem -- 9.2.2 Existing Results -- 9.2.3 Tree-Based Methods -- 9.2.4 Succinct Construction -- 9.2.5 Open Problem -- 9.3 Wear Leveling -- 9.3.1 Problem -- 9.3.2 Security Refresh -- 9.3.3 Construction for Small Write Limit Cases -- 9.3.4 Open Problem -- 9.4 Conclusion -- References -- Part IV Sublinear Modelling -- 10 Review of Sublinear Modeling in Probabilistic Graphical Models by Statistical Mechanical Informatics and Statistical Machine Learning Theory.
10.1 Introduction -- 10.2 Statistical Machine Learning -- 10.2.1 Bayesian Statistics and Maximization of Marginal Likelihood -- 10.2.2 Expectation-Maximization Algorithm -- 10.2.3 Expectation-Maximization Algorithm for Probabilistic Image Segmentations -- 10.3 Statistical Mechanical Informatics -- 10.3.1 Ising Model -- 10.3.2 Advanced Mean-Field Method -- 10.3.3 Free Energy Landscapes and Phase Transitions in the Thermodynamic Limit -- 10.3.4 Ising Model on a Complete Graph -- 10.3.5 Probabilistic Segmentation by Potts Prior and Loopy Belief Propagation -- 10.3.6 Real-Space Renormalization Group Method and Sublinear Modeling of Statistical Machine Learning -- 10.4 Quantum Statistical Machine Learning -- 10.4.1 Elementary Function and Differentiations of Hermitian Matrices -- 10.4.2 Minimization of Free Energy Functionals for Density Matrices -- 10.4.3 Tensor Products -- 10.4.4 Quantum Probabilistic Graphical Models and Quantum Expectation-Maximization Algorithm -- 10.4.5 Quantum Expectation-Maximization (EM) Algorithm for Probabilistic Image Segmentation -- 10.5 Quantum Statistical Mechanical Informatics -- 10.5.1 Advanced Mean-Field Methods for the Transverse Ising Model -- 10.5.2 Real-Space Renormalization Group Method for the Transverse Ising Model -- 10.5.3 Sublinear Modeling Using a Quantum Adaptive TAP Approach and Momentum Space Renormalization Group in the Transverse Ising Model -- 10.5.4 Suzuki-Trotter Decomposition in the Transverse Ising Model -- 10.6 Concluding Remarks -- References -- 11 Empirical Bayes Method for Boltzmann Machines -- 11.1 Introduction -- 11.2 Boltzmann Machine with Prior Distributions -- 11.3 Empirical Bayes Method -- 11.4 Statistical Mechanical Analysis of Empirical Bayes Likelihood -- 11.4.1 Replica Method -- 11.4.2 Plefka Expansion -- 11.4.3 Algorithm for Hyperparameter Estimation -- 11.5 Demonstration.
11.5.1 Gaussian Prior Case -- 11.5.2 Laplace Prior Case -- 11.6 Summary and Discussion -- 11.7 Appendices -- 11.7.1 Appendix 1: Gibbs Free Energy -- 11.7.2 Appendix 2: Coefficients of Plefka Expansion -- References -- 12 Dynamical Analysis of Quantum Annealing -- 12.1 Quantum Ensembles and Their Dynamics -- 12.2 Quantum Monte Carlo Dynamics -- 12.3 Dynamical Replica Analysis -- 12.4 Simple Examples -- 12.4.1 Non-interacting Quantum Spins in a Uniform x Field -- 12.4.2 Ferromagnetic z-interactions and Uniform x and z Fields -- 12.5 Link Between Statics and Dynamics -- 12.6 Evolution on Adiabatically Separated Timescales -- 12.7 Discussion -- References -- 13 Mean-Field Analysis of Sourlas Codes with Adiabatic Reverse Annealing -- 13.1 Introduction -- 13.2 Sourlas Codes Using Quantum Fluctuations -- 13.3 Replica Analysis for Adiabatic Reverse Annealing -- 13.4 Numerical Experiments -- 13.5 Summary -- References -- Part V Applications -- 14 Structural and Functional Analysis of Proteins Using Rigidity Theory -- 14.1 Introduction -- 14.2 Protein Structural Flexibility and Dynamics -- 14.2.1 Protein Flexibility and Dynamics Is Central to Protein Function -- 14.2.2 Techniques for Analysing and Predicting Protein Flexibility and Dynamics -- 14.3 Rigidity Theory -- 14.3.1 Combinatorial Rigidity Theory and the Molecular Theorem -- 14.4 Protein Flexibility, Dynamics, and Function Analysis with Rigidity Theory -- 14.4.1 FIRST and Rigid Cluster Decomposition -- 14.4.2 Large-Scale Rigidity and Flexibility Analysis -- 14.4.3 Protein Allostery Analysis with Rigidity Theory -- 14.4.4 Using Rigidity Theory to Simulate Protein Dynamics -- 14.5 Protein Structure Validation with Rigidity Theory -- 14.6 Conclusion -- References -- 15 Optimization of Evacuation and Walking-Home Routes from Osaka City After a Nankai Megathrust Earthquake Using Road Network Big Data.
15.1 Introduction.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Higashikawa, Yuya.
Ito, Hiro.
Nagao, Atsuki.
Shibuya, Tetsuo.
Sljoka, Adnan.
Tanaka, Kazuyuki.
Uno, Yushi.
Print version: Katoh, Naoki Sublinear Computation Paradigm Singapore : Springer Singapore Pte. Limited,c2021 9789811640940
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6787726 Click to View
language English
format eBook
author Katoh, Naoki.
spellingShingle Katoh, Naoki.
Sublinear Computation Paradigm : Algorithmic Revolution in the Big Data Era.
Intro -- Preface -- Contents -- Part I Introduction -- 1 What Is the Sublinear Computation Paradigm? -- 1.1 We Are in the Era of Big Data -- 1.2 Theory of Computational Complexity and Polynomial-Time Algorithms -- 1.3 Polynomial-Time Algorithms and Sublinear-Time Algorithms -- 1.3.1 A Brief History of Polynomial-Time Algorithms -- 1.3.2 Emergence of Sublinear-Time Algorithms -- 1.3.3 Property Testing and Parameter Testing -- 1.4 Ways to Decrease Computational Resources -- 1.4.1 Streaming Algorithms -- 1.4.2 Compression -- 1.4.3 Succinct Data Structures -- 1.5 Need for the Sublinear Computation Paradigm -- 1.5.1 Sublinear and Polynomial Computation Are Both Important -- 1.5.2 Research Project ABD -- 1.5.3 The Organization of This Book -- References -- Part II Sublinear Algorithms -- 2 Property Testing on Graphs and Games -- 2.1 Introduction -- 2.2 Basic Terms and Definitions for Property Testing -- 2.2.1 Graphs and the Three Models for Property Testing -- 2.2.2 Properties, Distances, and Testers -- 2.3 Important Known Results in Property Testing on Graphs -- 2.3.1 Results for the Dense-Graph Model -- 2.3.2 Results for the Bounded-Degree Model -- 2.3.3 Results for the General-Graph Model -- 2.4 Characterization of Testability on Bounded-Degree Digraphs -- 2.4.1 Bounded-Degree Model of Digraphs -- 2.4.2 Monotone Properties and Hereditary Properties -- 2.4.3 Characterizations -- 2.4.4 An Idea to Extend the Characterizations Beyond Monotone and Hereditary -- 2.5 Testable EXPTIME-Complete Games -- 2.5.1 Definitions -- 2.5.2 Testers for Generalized Chess, Shogi, and Xiangqi -- 2.6 Summary -- References -- 3 Constant-Time Algorithms for Continuous Optimization Problems -- 3.1 Introduction -- 3.2 Graph Limit Theory -- 3.3 Quadratic Function Minimization -- 3.3.1 Proof of Theorem 3.1 -- 3.4 Tensor Decomposition -- 3.4.1 Preliminaries.
3.4.2 Proof of Theorem 3.2 -- 3.4.3 Proof of Lemma 3.4 -- 3.4.4 Proof of Lemma 3.5 -- References -- 4 Oracle-Based Primal-Dual Algorithms for Packing and Covering Semidefinite Programs -- 4.1 Packing and Covering Semidefinite Programs -- 4.2 Applications -- 4.2.1 SDP relaxation for Robust MaxCut -- 4.2.2 Mahalanobis Distance Learning -- 4.2.3 Related Work -- 4.3 General Framework for Packing-Covering SDPs -- 4.4 Scalar Algorithms -- 4.4.1 Scalar MWU Algorithm for (Packing-I)-(Covering-I) -- 4.4.2 Scalar Logarithmic Potential Algorithm For (Packing-I)-(Covering-I) -- 4.5 Matrix Algorithms -- 4.5.1 Matrix MWU Algorithm For (Covering-II)-(Packing-II) -- 4.5.2 Matrix Logarithmic Potential Algorithm For (Packing-I)-(Covering-I) -- 4.5.3 Matrix Logarithmic Potential Algorithm For (Packing-II)-(Covering-II) -- References -- 5 Almost Linear Time Algorithms for Some Problems on Dynamic Flow Networks -- 5.1 Introduction -- 5.2 Preliminaries -- 5.3 Objective Functions -- 5.3.1 Objective Functions for the 1-Sink Problem -- 5.3.2 Objective Functions for k-Sink -- 5.4 Minmax k-Sink Problems on Paths -- 5.4.1 Feasibility Test -- 5.4.2 Solving the 1-Sink Problem -- 5.4.3 Parametric Search Method -- 5.4.4 Sorted Matrix Method -- 5.5 Minsum k-Sink Problems on Paths -- 5.5.1 Property of Aggregate Evacuation Time -- 5.5.2 Concave Monge Property -- References -- Part III Sublinear Data Structures -- 6 Information Processing on Compressed Data -- 6.1 Restructuring Compressed Data -- 6.1.1 Preliminaries -- 6.1.2 RLBWT to LZ77 -- 6.1.3 Recompression on Grammar Compression -- 6.2 Privacy-Preserving Similarity Computation -- 6.2.1 Related Work -- 6.2.2 Edit Distance with Moves -- 6.2.3 Homomorphic Encryption -- 6.2.4 L2HE-Based Algorithm for Secure EDM -- 6.2.5 Result and Open Question -- References -- 7 Compression and Pattern Matching -- 7.1 Introduction.
7.2 History of Compressed Pattern Matching Research -- 7.3 Preliminaries -- 7.3.1 Definitions of Notation and Terms -- 7.3.2 Grammar Compression -- 7.4 Framework for Compressed Pattern Matching -- 7.4.1 KMP Method -- 7.4.2 Collage System -- 7.4.3 Pattern Matching on Collage Systems -- 7.5 Repair-VF -- 7.5.1 RePair -- 7.5.2 Outline of Repair-VF -- 7.6 MR-Repair -- 7.6.1 Maximal Repeats -- 7.6.2 MR Order -- 7.6.3 Algorithm -- 7.7 Conclusion -- References -- 8 Orthogonal Range Search Data Structures -- 8.1 Introduction -- 8.1.1 Existing Work -- 8.1.2 Our Results -- 8.2 Preliminaries -- 8.2.1 Succinct Data Structures and Information-Theoretic Lower Bound -- 8.2.2 Assumptions on Point Sets -- 8.3 kd-Tree -- 8.3.1 Construction of kd-Trees -- 8.3.2 Range Search Algorithm -- 8.3.3 Complexity Analyses -- 8.4 Wavelet Tree -- 8.4.1 Construction -- 8.4.2 Range Search Algorithm -- 8.4.3 Complexity Analyses -- 8.5 Proposed Data Structure 1: Improved Query Time Complexity -- 8.5.1 Idea for Improving the Time Complexity of the kd-Tree -- 8.5.2 Index Construction -- 8.5.3 Range Search Algorithm -- 8.5.4 Complexity Analyses -- 8.6 Proposed Data Structure 2: Succinct and Practically Fast -- 8.6.1 Index Construction -- 8.6.2 Range Search Algorithm -- 8.6.3 Complexity Analyses -- 8.7 Conclusion -- References -- 9 Enhanced RAM Simulation in Succinct Space -- 9.1 Introduction -- 9.2 Oblivious RAM -- 9.2.1 Problem -- 9.2.2 Existing Results -- 9.2.3 Tree-Based Methods -- 9.2.4 Succinct Construction -- 9.2.5 Open Problem -- 9.3 Wear Leveling -- 9.3.1 Problem -- 9.3.2 Security Refresh -- 9.3.3 Construction for Small Write Limit Cases -- 9.3.4 Open Problem -- 9.4 Conclusion -- References -- Part IV Sublinear Modelling -- 10 Review of Sublinear Modeling in Probabilistic Graphical Models by Statistical Mechanical Informatics and Statistical Machine Learning Theory.
10.1 Introduction -- 10.2 Statistical Machine Learning -- 10.2.1 Bayesian Statistics and Maximization of Marginal Likelihood -- 10.2.2 Expectation-Maximization Algorithm -- 10.2.3 Expectation-Maximization Algorithm for Probabilistic Image Segmentations -- 10.3 Statistical Mechanical Informatics -- 10.3.1 Ising Model -- 10.3.2 Advanced Mean-Field Method -- 10.3.3 Free Energy Landscapes and Phase Transitions in the Thermodynamic Limit -- 10.3.4 Ising Model on a Complete Graph -- 10.3.5 Probabilistic Segmentation by Potts Prior and Loopy Belief Propagation -- 10.3.6 Real-Space Renormalization Group Method and Sublinear Modeling of Statistical Machine Learning -- 10.4 Quantum Statistical Machine Learning -- 10.4.1 Elementary Function and Differentiations of Hermitian Matrices -- 10.4.2 Minimization of Free Energy Functionals for Density Matrices -- 10.4.3 Tensor Products -- 10.4.4 Quantum Probabilistic Graphical Models and Quantum Expectation-Maximization Algorithm -- 10.4.5 Quantum Expectation-Maximization (EM) Algorithm for Probabilistic Image Segmentation -- 10.5 Quantum Statistical Mechanical Informatics -- 10.5.1 Advanced Mean-Field Methods for the Transverse Ising Model -- 10.5.2 Real-Space Renormalization Group Method for the Transverse Ising Model -- 10.5.3 Sublinear Modeling Using a Quantum Adaptive TAP Approach and Momentum Space Renormalization Group in the Transverse Ising Model -- 10.5.4 Suzuki-Trotter Decomposition in the Transverse Ising Model -- 10.6 Concluding Remarks -- References -- 11 Empirical Bayes Method for Boltzmann Machines -- 11.1 Introduction -- 11.2 Boltzmann Machine with Prior Distributions -- 11.3 Empirical Bayes Method -- 11.4 Statistical Mechanical Analysis of Empirical Bayes Likelihood -- 11.4.1 Replica Method -- 11.4.2 Plefka Expansion -- 11.4.3 Algorithm for Hyperparameter Estimation -- 11.5 Demonstration.
11.5.1 Gaussian Prior Case -- 11.5.2 Laplace Prior Case -- 11.6 Summary and Discussion -- 11.7 Appendices -- 11.7.1 Appendix 1: Gibbs Free Energy -- 11.7.2 Appendix 2: Coefficients of Plefka Expansion -- References -- 12 Dynamical Analysis of Quantum Annealing -- 12.1 Quantum Ensembles and Their Dynamics -- 12.2 Quantum Monte Carlo Dynamics -- 12.3 Dynamical Replica Analysis -- 12.4 Simple Examples -- 12.4.1 Non-interacting Quantum Spins in a Uniform x Field -- 12.4.2 Ferromagnetic z-interactions and Uniform x and z Fields -- 12.5 Link Between Statics and Dynamics -- 12.6 Evolution on Adiabatically Separated Timescales -- 12.7 Discussion -- References -- 13 Mean-Field Analysis of Sourlas Codes with Adiabatic Reverse Annealing -- 13.1 Introduction -- 13.2 Sourlas Codes Using Quantum Fluctuations -- 13.3 Replica Analysis for Adiabatic Reverse Annealing -- 13.4 Numerical Experiments -- 13.5 Summary -- References -- Part V Applications -- 14 Structural and Functional Analysis of Proteins Using Rigidity Theory -- 14.1 Introduction -- 14.2 Protein Structural Flexibility and Dynamics -- 14.2.1 Protein Flexibility and Dynamics Is Central to Protein Function -- 14.2.2 Techniques for Analysing and Predicting Protein Flexibility and Dynamics -- 14.3 Rigidity Theory -- 14.3.1 Combinatorial Rigidity Theory and the Molecular Theorem -- 14.4 Protein Flexibility, Dynamics, and Function Analysis with Rigidity Theory -- 14.4.1 FIRST and Rigid Cluster Decomposition -- 14.4.2 Large-Scale Rigidity and Flexibility Analysis -- 14.4.3 Protein Allostery Analysis with Rigidity Theory -- 14.4.4 Using Rigidity Theory to Simulate Protein Dynamics -- 14.5 Protein Structure Validation with Rigidity Theory -- 14.6 Conclusion -- References -- 15 Optimization of Evacuation and Walking-Home Routes from Osaka City After a Nankai Megathrust Earthquake Using Road Network Big Data.
15.1 Introduction.
author_facet Katoh, Naoki.
Higashikawa, Yuya.
Ito, Hiro.
Nagao, Atsuki.
Shibuya, Tetsuo.
Sljoka, Adnan.
Tanaka, Kazuyuki.
Uno, Yushi.
author_variant n k nk
author2 Higashikawa, Yuya.
Ito, Hiro.
Nagao, Atsuki.
Shibuya, Tetsuo.
Sljoka, Adnan.
Tanaka, Kazuyuki.
Uno, Yushi.
author2_variant y h yh
h i hi
a n an
t s ts
a s as
k t kt
y u yu
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Katoh, Naoki.
title Sublinear Computation Paradigm : Algorithmic Revolution in the Big Data Era.
title_sub Algorithmic Revolution in the Big Data Era.
title_full Sublinear Computation Paradigm : Algorithmic Revolution in the Big Data Era.
title_fullStr Sublinear Computation Paradigm : Algorithmic Revolution in the Big Data Era.
title_full_unstemmed Sublinear Computation Paradigm : Algorithmic Revolution in the Big Data Era.
title_auth Sublinear Computation Paradigm : Algorithmic Revolution in the Big Data Era.
title_new Sublinear Computation Paradigm :
title_sort sublinear computation paradigm : algorithmic revolution in the big data era.
publisher Springer Singapore Pte. Limited,
publishDate 2021
physical 1 online resource (403 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- Part I Introduction -- 1 What Is the Sublinear Computation Paradigm? -- 1.1 We Are in the Era of Big Data -- 1.2 Theory of Computational Complexity and Polynomial-Time Algorithms -- 1.3 Polynomial-Time Algorithms and Sublinear-Time Algorithms -- 1.3.1 A Brief History of Polynomial-Time Algorithms -- 1.3.2 Emergence of Sublinear-Time Algorithms -- 1.3.3 Property Testing and Parameter Testing -- 1.4 Ways to Decrease Computational Resources -- 1.4.1 Streaming Algorithms -- 1.4.2 Compression -- 1.4.3 Succinct Data Structures -- 1.5 Need for the Sublinear Computation Paradigm -- 1.5.1 Sublinear and Polynomial Computation Are Both Important -- 1.5.2 Research Project ABD -- 1.5.3 The Organization of This Book -- References -- Part II Sublinear Algorithms -- 2 Property Testing on Graphs and Games -- 2.1 Introduction -- 2.2 Basic Terms and Definitions for Property Testing -- 2.2.1 Graphs and the Three Models for Property Testing -- 2.2.2 Properties, Distances, and Testers -- 2.3 Important Known Results in Property Testing on Graphs -- 2.3.1 Results for the Dense-Graph Model -- 2.3.2 Results for the Bounded-Degree Model -- 2.3.3 Results for the General-Graph Model -- 2.4 Characterization of Testability on Bounded-Degree Digraphs -- 2.4.1 Bounded-Degree Model of Digraphs -- 2.4.2 Monotone Properties and Hereditary Properties -- 2.4.3 Characterizations -- 2.4.4 An Idea to Extend the Characterizations Beyond Monotone and Hereditary -- 2.5 Testable EXPTIME-Complete Games -- 2.5.1 Definitions -- 2.5.2 Testers for Generalized Chess, Shogi, and Xiangqi -- 2.6 Summary -- References -- 3 Constant-Time Algorithms for Continuous Optimization Problems -- 3.1 Introduction -- 3.2 Graph Limit Theory -- 3.3 Quadratic Function Minimization -- 3.3.1 Proof of Theorem 3.1 -- 3.4 Tensor Decomposition -- 3.4.1 Preliminaries.
3.4.2 Proof of Theorem 3.2 -- 3.4.3 Proof of Lemma 3.4 -- 3.4.4 Proof of Lemma 3.5 -- References -- 4 Oracle-Based Primal-Dual Algorithms for Packing and Covering Semidefinite Programs -- 4.1 Packing and Covering Semidefinite Programs -- 4.2 Applications -- 4.2.1 SDP relaxation for Robust MaxCut -- 4.2.2 Mahalanobis Distance Learning -- 4.2.3 Related Work -- 4.3 General Framework for Packing-Covering SDPs -- 4.4 Scalar Algorithms -- 4.4.1 Scalar MWU Algorithm for (Packing-I)-(Covering-I) -- 4.4.2 Scalar Logarithmic Potential Algorithm For (Packing-I)-(Covering-I) -- 4.5 Matrix Algorithms -- 4.5.1 Matrix MWU Algorithm For (Covering-II)-(Packing-II) -- 4.5.2 Matrix Logarithmic Potential Algorithm For (Packing-I)-(Covering-I) -- 4.5.3 Matrix Logarithmic Potential Algorithm For (Packing-II)-(Covering-II) -- References -- 5 Almost Linear Time Algorithms for Some Problems on Dynamic Flow Networks -- 5.1 Introduction -- 5.2 Preliminaries -- 5.3 Objective Functions -- 5.3.1 Objective Functions for the 1-Sink Problem -- 5.3.2 Objective Functions for k-Sink -- 5.4 Minmax k-Sink Problems on Paths -- 5.4.1 Feasibility Test -- 5.4.2 Solving the 1-Sink Problem -- 5.4.3 Parametric Search Method -- 5.4.4 Sorted Matrix Method -- 5.5 Minsum k-Sink Problems on Paths -- 5.5.1 Property of Aggregate Evacuation Time -- 5.5.2 Concave Monge Property -- References -- Part III Sublinear Data Structures -- 6 Information Processing on Compressed Data -- 6.1 Restructuring Compressed Data -- 6.1.1 Preliminaries -- 6.1.2 RLBWT to LZ77 -- 6.1.3 Recompression on Grammar Compression -- 6.2 Privacy-Preserving Similarity Computation -- 6.2.1 Related Work -- 6.2.2 Edit Distance with Moves -- 6.2.3 Homomorphic Encryption -- 6.2.4 L2HE-Based Algorithm for Secure EDM -- 6.2.5 Result and Open Question -- References -- 7 Compression and Pattern Matching -- 7.1 Introduction.
7.2 History of Compressed Pattern Matching Research -- 7.3 Preliminaries -- 7.3.1 Definitions of Notation and Terms -- 7.3.2 Grammar Compression -- 7.4 Framework for Compressed Pattern Matching -- 7.4.1 KMP Method -- 7.4.2 Collage System -- 7.4.3 Pattern Matching on Collage Systems -- 7.5 Repair-VF -- 7.5.1 RePair -- 7.5.2 Outline of Repair-VF -- 7.6 MR-Repair -- 7.6.1 Maximal Repeats -- 7.6.2 MR Order -- 7.6.3 Algorithm -- 7.7 Conclusion -- References -- 8 Orthogonal Range Search Data Structures -- 8.1 Introduction -- 8.1.1 Existing Work -- 8.1.2 Our Results -- 8.2 Preliminaries -- 8.2.1 Succinct Data Structures and Information-Theoretic Lower Bound -- 8.2.2 Assumptions on Point Sets -- 8.3 kd-Tree -- 8.3.1 Construction of kd-Trees -- 8.3.2 Range Search Algorithm -- 8.3.3 Complexity Analyses -- 8.4 Wavelet Tree -- 8.4.1 Construction -- 8.4.2 Range Search Algorithm -- 8.4.3 Complexity Analyses -- 8.5 Proposed Data Structure 1: Improved Query Time Complexity -- 8.5.1 Idea for Improving the Time Complexity of the kd-Tree -- 8.5.2 Index Construction -- 8.5.3 Range Search Algorithm -- 8.5.4 Complexity Analyses -- 8.6 Proposed Data Structure 2: Succinct and Practically Fast -- 8.6.1 Index Construction -- 8.6.2 Range Search Algorithm -- 8.6.3 Complexity Analyses -- 8.7 Conclusion -- References -- 9 Enhanced RAM Simulation in Succinct Space -- 9.1 Introduction -- 9.2 Oblivious RAM -- 9.2.1 Problem -- 9.2.2 Existing Results -- 9.2.3 Tree-Based Methods -- 9.2.4 Succinct Construction -- 9.2.5 Open Problem -- 9.3 Wear Leveling -- 9.3.1 Problem -- 9.3.2 Security Refresh -- 9.3.3 Construction for Small Write Limit Cases -- 9.3.4 Open Problem -- 9.4 Conclusion -- References -- Part IV Sublinear Modelling -- 10 Review of Sublinear Modeling in Probabilistic Graphical Models by Statistical Mechanical Informatics and Statistical Machine Learning Theory.
10.1 Introduction -- 10.2 Statistical Machine Learning -- 10.2.1 Bayesian Statistics and Maximization of Marginal Likelihood -- 10.2.2 Expectation-Maximization Algorithm -- 10.2.3 Expectation-Maximization Algorithm for Probabilistic Image Segmentations -- 10.3 Statistical Mechanical Informatics -- 10.3.1 Ising Model -- 10.3.2 Advanced Mean-Field Method -- 10.3.3 Free Energy Landscapes and Phase Transitions in the Thermodynamic Limit -- 10.3.4 Ising Model on a Complete Graph -- 10.3.5 Probabilistic Segmentation by Potts Prior and Loopy Belief Propagation -- 10.3.6 Real-Space Renormalization Group Method and Sublinear Modeling of Statistical Machine Learning -- 10.4 Quantum Statistical Machine Learning -- 10.4.1 Elementary Function and Differentiations of Hermitian Matrices -- 10.4.2 Minimization of Free Energy Functionals for Density Matrices -- 10.4.3 Tensor Products -- 10.4.4 Quantum Probabilistic Graphical Models and Quantum Expectation-Maximization Algorithm -- 10.4.5 Quantum Expectation-Maximization (EM) Algorithm for Probabilistic Image Segmentation -- 10.5 Quantum Statistical Mechanical Informatics -- 10.5.1 Advanced Mean-Field Methods for the Transverse Ising Model -- 10.5.2 Real-Space Renormalization Group Method for the Transverse Ising Model -- 10.5.3 Sublinear Modeling Using a Quantum Adaptive TAP Approach and Momentum Space Renormalization Group in the Transverse Ising Model -- 10.5.4 Suzuki-Trotter Decomposition in the Transverse Ising Model -- 10.6 Concluding Remarks -- References -- 11 Empirical Bayes Method for Boltzmann Machines -- 11.1 Introduction -- 11.2 Boltzmann Machine with Prior Distributions -- 11.3 Empirical Bayes Method -- 11.4 Statistical Mechanical Analysis of Empirical Bayes Likelihood -- 11.4.1 Replica Method -- 11.4.2 Plefka Expansion -- 11.4.3 Algorithm for Hyperparameter Estimation -- 11.5 Demonstration.
11.5.1 Gaussian Prior Case -- 11.5.2 Laplace Prior Case -- 11.6 Summary and Discussion -- 11.7 Appendices -- 11.7.1 Appendix 1: Gibbs Free Energy -- 11.7.2 Appendix 2: Coefficients of Plefka Expansion -- References -- 12 Dynamical Analysis of Quantum Annealing -- 12.1 Quantum Ensembles and Their Dynamics -- 12.2 Quantum Monte Carlo Dynamics -- 12.3 Dynamical Replica Analysis -- 12.4 Simple Examples -- 12.4.1 Non-interacting Quantum Spins in a Uniform x Field -- 12.4.2 Ferromagnetic z-interactions and Uniform x and z Fields -- 12.5 Link Between Statics and Dynamics -- 12.6 Evolution on Adiabatically Separated Timescales -- 12.7 Discussion -- References -- 13 Mean-Field Analysis of Sourlas Codes with Adiabatic Reverse Annealing -- 13.1 Introduction -- 13.2 Sourlas Codes Using Quantum Fluctuations -- 13.3 Replica Analysis for Adiabatic Reverse Annealing -- 13.4 Numerical Experiments -- 13.5 Summary -- References -- Part V Applications -- 14 Structural and Functional Analysis of Proteins Using Rigidity Theory -- 14.1 Introduction -- 14.2 Protein Structural Flexibility and Dynamics -- 14.2.1 Protein Flexibility and Dynamics Is Central to Protein Function -- 14.2.2 Techniques for Analysing and Predicting Protein Flexibility and Dynamics -- 14.3 Rigidity Theory -- 14.3.1 Combinatorial Rigidity Theory and the Molecular Theorem -- 14.4 Protein Flexibility, Dynamics, and Function Analysis with Rigidity Theory -- 14.4.1 FIRST and Rigid Cluster Decomposition -- 14.4.2 Large-Scale Rigidity and Flexibility Analysis -- 14.4.3 Protein Allostery Analysis with Rigidity Theory -- 14.4.4 Using Rigidity Theory to Simulate Protein Dynamics -- 14.5 Protein Structure Validation with Rigidity Theory -- 14.6 Conclusion -- References -- 15 Optimization of Evacuation and Walking-Home Routes from Osaka City After a Nankai Megathrust Earthquake Using Road Network Big Data.
15.1 Introduction.
isbn 9789811640957
9789811640940
callnumber-first Q - Science
callnumber-subject QA - Mathematics
callnumber-label QA75
callnumber-sort QA 275.5 276.95
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6787726
illustrated Not Illustrated
oclc_num 1314627511
work_keys_str_mv AT katohnaoki sublinearcomputationparadigmalgorithmicrevolutioninthebigdataera
AT higashikawayuya sublinearcomputationparadigmalgorithmicrevolutioninthebigdataera
AT itohiro sublinearcomputationparadigmalgorithmicrevolutioninthebigdataera
AT nagaoatsuki sublinearcomputationparadigmalgorithmicrevolutioninthebigdataera
AT shibuyatetsuo sublinearcomputationparadigmalgorithmicrevolutioninthebigdataera
AT sljokaadnan sublinearcomputationparadigmalgorithmicrevolutioninthebigdataera
AT tanakakazuyuki sublinearcomputationparadigmalgorithmicrevolutioninthebigdataera
AT unoyushi sublinearcomputationparadigmalgorithmicrevolutioninthebigdataera
status_str n
ids_txt_mv (MiAaPQ)5006787726
(Au-PeEL)EBL6787726
(OCoLC)1314627511
carrierType_str_mv cr
is_hierarchy_title Sublinear Computation Paradigm : Algorithmic Revolution in the Big Data Era.
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
marc_error Info : Unimarc and ISO-8859-1 translations identical, choosing ISO-8859-1. --- [ 856 : z ]
_version_ 1792331060933033985
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11148nam a22005173i 4500</leader><controlfield tag="001">5006787726</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073845.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2021 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811640957</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789811640940</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006787726</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6787726</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1314627511</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Katoh, Naoki.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sublinear Computation Paradigm :</subfield><subfield code="b">Algorithmic Revolution in the Big Data Era.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">Springer Singapore Pte. Limited,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">Ã2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (403 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Part I Introduction -- 1 What Is the Sublinear Computation Paradigm? -- 1.1 We Are in the Era of Big Data -- 1.2 Theory of Computational Complexity and Polynomial-Time Algorithms -- 1.3 Polynomial-Time Algorithms and Sublinear-Time Algorithms -- 1.3.1 A Brief History of Polynomial-Time Algorithms -- 1.3.2 Emergence of Sublinear-Time Algorithms -- 1.3.3 Property Testing and Parameter Testing -- 1.4 Ways to Decrease Computational Resources -- 1.4.1 Streaming Algorithms -- 1.4.2 Compression -- 1.4.3 Succinct Data Structures -- 1.5 Need for the Sublinear Computation Paradigm -- 1.5.1 Sublinear and Polynomial Computation Are Both Important -- 1.5.2 Research Project ABD -- 1.5.3 The Organization of This Book -- References -- Part II Sublinear Algorithms -- 2 Property Testing on Graphs and Games -- 2.1 Introduction -- 2.2 Basic Terms and Definitions for Property Testing -- 2.2.1 Graphs and the Three Models for Property Testing -- 2.2.2 Properties, Distances, and Testers -- 2.3 Important Known Results in Property Testing on Graphs -- 2.3.1 Results for the Dense-Graph Model -- 2.3.2 Results for the Bounded-Degree Model -- 2.3.3 Results for the General-Graph Model -- 2.4 Characterization of Testability on Bounded-Degree Digraphs -- 2.4.1 Bounded-Degree Model of Digraphs -- 2.4.2 Monotone Properties and Hereditary Properties -- 2.4.3 Characterizations -- 2.4.4 An Idea to Extend the Characterizations Beyond Monotone and Hereditary -- 2.5 Testable EXPTIME-Complete Games -- 2.5.1 Definitions -- 2.5.2 Testers for Generalized Chess, Shogi, and Xiangqi -- 2.6 Summary -- References -- 3 Constant-Time Algorithms for Continuous Optimization Problems -- 3.1 Introduction -- 3.2 Graph Limit Theory -- 3.3 Quadratic Function Minimization -- 3.3.1 Proof of Theorem 3.1 -- 3.4 Tensor Decomposition -- 3.4.1 Preliminaries.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.2 Proof of Theorem 3.2 -- 3.4.3 Proof of Lemma 3.4 -- 3.4.4 Proof of Lemma 3.5 -- References -- 4 Oracle-Based Primal-Dual Algorithms for Packing and Covering Semidefinite Programs -- 4.1 Packing and Covering Semidefinite Programs -- 4.2 Applications -- 4.2.1 SDP relaxation for Robust MaxCut -- 4.2.2 Mahalanobis Distance Learning -- 4.2.3 Related Work -- 4.3 General Framework for Packing-Covering SDPs -- 4.4 Scalar Algorithms -- 4.4.1 Scalar MWU Algorithm for (Packing-I)-(Covering-I) -- 4.4.2 Scalar Logarithmic Potential Algorithm For (Packing-I)-(Covering-I) -- 4.5 Matrix Algorithms -- 4.5.1 Matrix MWU Algorithm For (Covering-II)-(Packing-II) -- 4.5.2 Matrix Logarithmic Potential Algorithm For (Packing-I)-(Covering-I) -- 4.5.3 Matrix Logarithmic Potential Algorithm For (Packing-II)-(Covering-II) -- References -- 5 Almost Linear Time Algorithms for Some Problems on Dynamic Flow Networks -- 5.1 Introduction -- 5.2 Preliminaries -- 5.3 Objective Functions -- 5.3.1 Objective Functions for the 1-Sink Problem -- 5.3.2 Objective Functions for k-Sink -- 5.4 Minmax k-Sink Problems on Paths -- 5.4.1 Feasibility Test -- 5.4.2 Solving the 1-Sink Problem -- 5.4.3 Parametric Search Method -- 5.4.4 Sorted Matrix Method -- 5.5 Minsum k-Sink Problems on Paths -- 5.5.1 Property of Aggregate Evacuation Time -- 5.5.2 Concave Monge Property -- References -- Part III Sublinear Data Structures -- 6 Information Processing on Compressed Data -- 6.1 Restructuring Compressed Data -- 6.1.1 Preliminaries -- 6.1.2 RLBWT to LZ77 -- 6.1.3 Recompression on Grammar Compression -- 6.2 Privacy-Preserving Similarity Computation -- 6.2.1 Related Work -- 6.2.2 Edit Distance with Moves -- 6.2.3 Homomorphic Encryption -- 6.2.4 L2HE-Based Algorithm for Secure EDM -- 6.2.5 Result and Open Question -- References -- 7 Compression and Pattern Matching -- 7.1 Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.2 History of Compressed Pattern Matching Research -- 7.3 Preliminaries -- 7.3.1 Definitions of Notation and Terms -- 7.3.2 Grammar Compression -- 7.4 Framework for Compressed Pattern Matching -- 7.4.1 KMP Method -- 7.4.2 Collage System -- 7.4.3 Pattern Matching on Collage Systems -- 7.5 Repair-VF -- 7.5.1 RePair -- 7.5.2 Outline of Repair-VF -- 7.6 MR-Repair -- 7.6.1 Maximal Repeats -- 7.6.2 MR Order -- 7.6.3 Algorithm -- 7.7 Conclusion -- References -- 8 Orthogonal Range Search Data Structures -- 8.1 Introduction -- 8.1.1 Existing Work -- 8.1.2 Our Results -- 8.2 Preliminaries -- 8.2.1 Succinct Data Structures and Information-Theoretic Lower Bound -- 8.2.2 Assumptions on Point Sets -- 8.3 kd-Tree -- 8.3.1 Construction of kd-Trees -- 8.3.2 Range Search Algorithm -- 8.3.3 Complexity Analyses -- 8.4 Wavelet Tree -- 8.4.1 Construction -- 8.4.2 Range Search Algorithm -- 8.4.3 Complexity Analyses -- 8.5 Proposed Data Structure 1: Improved Query Time Complexity -- 8.5.1 Idea for Improving the Time Complexity of the kd-Tree -- 8.5.2 Index Construction -- 8.5.3 Range Search Algorithm -- 8.5.4 Complexity Analyses -- 8.6 Proposed Data Structure 2: Succinct and Practically Fast -- 8.6.1 Index Construction -- 8.6.2 Range Search Algorithm -- 8.6.3 Complexity Analyses -- 8.7 Conclusion -- References -- 9 Enhanced RAM Simulation in Succinct Space -- 9.1 Introduction -- 9.2 Oblivious RAM -- 9.2.1 Problem -- 9.2.2 Existing Results -- 9.2.3 Tree-Based Methods -- 9.2.4 Succinct Construction -- 9.2.5 Open Problem -- 9.3 Wear Leveling -- 9.3.1 Problem -- 9.3.2 Security Refresh -- 9.3.3 Construction for Small Write Limit Cases -- 9.3.4 Open Problem -- 9.4 Conclusion -- References -- Part IV Sublinear Modelling -- 10 Review of Sublinear Modeling in Probabilistic Graphical Models by Statistical Mechanical Informatics and Statistical Machine Learning Theory.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.1 Introduction -- 10.2 Statistical Machine Learning -- 10.2.1 Bayesian Statistics and Maximization of Marginal Likelihood -- 10.2.2 Expectation-Maximization Algorithm -- 10.2.3 Expectation-Maximization Algorithm for Probabilistic Image Segmentations -- 10.3 Statistical Mechanical Informatics -- 10.3.1 Ising Model -- 10.3.2 Advanced Mean-Field Method -- 10.3.3 Free Energy Landscapes and Phase Transitions in the Thermodynamic Limit -- 10.3.4 Ising Model on a Complete Graph -- 10.3.5 Probabilistic Segmentation by Potts Prior and Loopy Belief Propagation -- 10.3.6 Real-Space Renormalization Group Method and Sublinear Modeling of Statistical Machine Learning -- 10.4 Quantum Statistical Machine Learning -- 10.4.1 Elementary Function and Differentiations of Hermitian Matrices -- 10.4.2 Minimization of Free Energy Functionals for Density Matrices -- 10.4.3 Tensor Products -- 10.4.4 Quantum Probabilistic Graphical Models and Quantum Expectation-Maximization Algorithm -- 10.4.5 Quantum Expectation-Maximization (EM) Algorithm for Probabilistic Image Segmentation -- 10.5 Quantum Statistical Mechanical Informatics -- 10.5.1 Advanced Mean-Field Methods for the Transverse Ising Model -- 10.5.2 Real-Space Renormalization Group Method for the Transverse Ising Model -- 10.5.3 Sublinear Modeling Using a Quantum Adaptive TAP Approach and Momentum Space Renormalization Group in the Transverse Ising Model -- 10.5.4 Suzuki-Trotter Decomposition in the Transverse Ising Model -- 10.6 Concluding Remarks -- References -- 11 Empirical Bayes Method for Boltzmann Machines -- 11.1 Introduction -- 11.2 Boltzmann Machine with Prior Distributions -- 11.3 Empirical Bayes Method -- 11.4 Statistical Mechanical Analysis of Empirical Bayes Likelihood -- 11.4.1 Replica Method -- 11.4.2 Plefka Expansion -- 11.4.3 Algorithm for Hyperparameter Estimation -- 11.5 Demonstration.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.5.1 Gaussian Prior Case -- 11.5.2 Laplace Prior Case -- 11.6 Summary and Discussion -- 11.7 Appendices -- 11.7.1 Appendix 1: Gibbs Free Energy -- 11.7.2 Appendix 2: Coefficients of Plefka Expansion -- References -- 12 Dynamical Analysis of Quantum Annealing -- 12.1 Quantum Ensembles and Their Dynamics -- 12.2 Quantum Monte Carlo Dynamics -- 12.3 Dynamical Replica Analysis -- 12.4 Simple Examples -- 12.4.1 Non-interacting Quantum Spins in a Uniform x Field -- 12.4.2 Ferromagnetic z-interactions and Uniform x and z Fields -- 12.5 Link Between Statics and Dynamics -- 12.6 Evolution on Adiabatically Separated Timescales -- 12.7 Discussion -- References -- 13 Mean-Field Analysis of Sourlas Codes with Adiabatic Reverse Annealing -- 13.1 Introduction -- 13.2 Sourlas Codes Using Quantum Fluctuations -- 13.3 Replica Analysis for Adiabatic Reverse Annealing -- 13.4 Numerical Experiments -- 13.5 Summary -- References -- Part V Applications -- 14 Structural and Functional Analysis of Proteins Using Rigidity Theory -- 14.1 Introduction -- 14.2 Protein Structural Flexibility and Dynamics -- 14.2.1 Protein Flexibility and Dynamics Is Central to Protein Function -- 14.2.2 Techniques for Analysing and Predicting Protein Flexibility and Dynamics -- 14.3 Rigidity Theory -- 14.3.1 Combinatorial Rigidity Theory and the Molecular Theorem -- 14.4 Protein Flexibility, Dynamics, and Function Analysis with Rigidity Theory -- 14.4.1 FIRST and Rigid Cluster Decomposition -- 14.4.2 Large-Scale Rigidity and Flexibility Analysis -- 14.4.3 Protein Allostery Analysis with Rigidity Theory -- 14.4.4 Using Rigidity Theory to Simulate Protein Dynamics -- 14.5 Protein Structure Validation with Rigidity Theory -- 14.6 Conclusion -- References -- 15 Optimization of Evacuation and Walking-Home Routes from Osaka City After a Nankai Megathrust Earthquake Using Road Network Big Data.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">15.1 Introduction.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Higashikawa, Yuya.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ito, Hiro.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nagao, Atsuki.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shibuya, Tetsuo.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sljoka, Adnan.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tanaka, Kazuyuki.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uno, Yushi.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Katoh, Naoki</subfield><subfield code="t">Sublinear Computation Paradigm</subfield><subfield code="d">Singapore : Springer Singapore Pte. Limited,c2021</subfield><subfield code="z">9789811640940</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6787726</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>