Structural Health Monitoring Damage Detection Systems for Aerospace.

Saved in:
Bibliographic Details
Superior document:Springer Aerospace Technology Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Springer Aerospace Technology Series
Online Access:
Physical Description:1 online resource (292 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006733486
ctrlnum (MiAaPQ)5006733486
(Au-PeEL)EBL6733486
(OCoLC)1272955903
collection bib_alma
record_format marc
spelling Sause, Markus G. R.
Structural Health Monitoring Damage Detection Systems for Aerospace.
1st ed.
Cham : Springer International Publishing AG, 2021.
©2021.
1 online resource (292 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Springer Aerospace Technology Series
Intro -- Preface -- Acknowledgment -- Contents -- Contributors -- Chapter 1: Introduction -- Chapter 2: Monitoring Tasks in Aerospace -- 2.1 Condition Monitoring -- 2.2 Operation Monitoring (OM) -- 2.3 Damage Monitoring (DM) -- 2.4 Challenges -- References -- Chapter 3: Defect Types -- 3.1 Metallic Materials -- 3.1.1 Defects During the Manufacturing Process -- 3.1.2 Defects During In-service Conditions -- 3.1.2.1 Fatigue -- 3.1.2.2 Corrosion -- 3.1.2.3 Creep -- 3.1.2.4 Operational Overload -- 3.1.2.5 Wear -- 3.1.2.6 Extreme Weather Conditions -- 3.1.2.7 Miscellaneous Defect Types in Metals -- 3.2 Composite Materials -- 3.2.1 Disbonds -- 3.2.2 Delamination -- 3.2.3 Foreign Inclusion -- 3.2.4 Matrix Cracking -- 3.2.5 Porosity -- 3.2.6 Fibre Breakage -- 3.2.7 Other Composite Laminate Typical Defects -- 3.2.8 Typical Honeycomb Core Defects -- 3.2.9 Typical Foam Core Defects -- 3.2.10 Ingress of Moisture and Temperature -- 3.2.11 Fatigue -- 3.3 Defects in Coatings -- 3.3.1 Defects During the Manufacturing Process -- 3.3.2 Defects During In-service Conditions -- 3.4 Defects in Joints -- 3.4.1 Adhesively Bonded Joints -- 3.4.2 Friction Stir-Welded Joints -- 3.5 Concluding Remarks -- References -- Chapter 4: Aerospace Requirements -- 4.1 Power Consumption -- 4.2 System Reliability/Durability -- 4.3 Effect of Operational Conditions -- 4.4 Size/Weight Restrictions -- 4.5 Optimal Sensor Placement -- 4.6 Summary -- References -- Chapter 5: Ultrasonic Methods -- 5.1 Introduction to Ultrasonic Inspection -- 5.2 Ultrasonic Guided Wave (GW) Inspection -- 5.2.1 Governing Equations of GW Wave Propagation -- 5.2.1.1 Waves in Unbounded Media -- 5.2.1.2 Boundary Conditions -- 5.2.1.3 Dispersion Relation -- 5.2.2 Active and Passive Guided Wave Inspection -- 5.2.3 Dispersion and Attenuation -- 5.2.4 Guided Wave Excitation and Mode Selection -- 5.3 Defect Detection.
5.3.1 Defect Localisation and Imaging: Sparse, Phased Arrays and Guided Wave Tomography -- 5.3.2 Guided Wave Interaction with Actual Structural Defect -- 5.4 Reliability of SHM Systems -- 5.4.1 Basic Concepts of POD and PFA -- 5.4.2 Sources of Variability of SHM System -- 5.4.3 Analysis of Environmental and Operational Conditions -- 5.4.4 POD Assessment Solutions -- 5.4.5 Model-Assisted POD for SHM System -- 5.5 Guided Wave Applications to SHM of Aerospace Components -- 5.6 Summary -- References -- Chapter 6: Vibration Response-Based Damage Detection -- 6.1 Introduction -- 6.2 The Rationale of Vibration-Based Methods -- 6.3 Environmental and Operational Influences -- 6.4 Modal-Based Methods and Damage Features -- 6.4.1 Natural Frequencies -- 6.4.2 Mode Shapes -- 6.4.3 Modal Slope -- 6.4.4 Modal Curvature -- 6.4.5 Strain Energy -- 6.4.6 Damping -- 6.4.7 Interpolation Error -- 6.5 Time Series Methods -- 6.5.1 Autoregressive Parameters -- 6.5.2 Intrinsic Mode Function and Hilbert Spectrum -- 6.5.3 Signal Components -- 6.5.4 Damage Indices Based on Extracted Features -- 6.5.5 Singular Spectrum Analysis (SSA) -- 6.5.6 First-Order Eigen Perturbation (FOEP) Technique -- 6.6 Time-Frequency Methods -- 6.6.1 Scalogram and Spectrogram -- 6.7 Drawbacks and Limitations -- 6.8 Case Studies -- 6.8.1 Vibration-Based Damage Detection in a Composite Plate by Means of Acceleration Responses -- 6.8.2 Numerical Comparison of Modal-Based Methods for Damage Detection -- 6.8.3 Vibration-Based Monitoring of a Scaled Wind Turbine Blade by Means of Acceleration and Strain Responses -- 6.9 Conclusions -- References -- Chapter 7: Acoustic Emission -- 7.1 Introduction -- 7.2 Basic Experimental Details and Parameters -- 7.3 Fracture Mode Characterization in Plate Structures -- 7.3.1 AE Source Types -- 7.3.2 Procedures for AE Source Identification -- 7.4 Localization.
7.5 Influence of Propagation -- 7.6 Different Sensor Types -- 7.7 Dedicated Aeronautics Applications and Examples -- 7.8 General Considerations -- References -- Chapter 8: Strain Monitoring -- 8.1 Strain Gauges -- 8.2 Optical Fiber Sensors -- 8.2.1 Introduction -- 8.2.2 Types of Optical Fiber Sensors -- 8.2.3 Interferometry -- 8.2.4 Mach-Zehnder -- 8.2.5 Michelson Interferometer -- 8.2.6 Sagnac Interferometer -- 8.2.7 Fabry-Pérot -- 8.2.8 Fiber Bragg Grating Sensors -- 8.2.9 Other FBG Grating Structures -- 8.2.10 State-of-the Art Damage Detection Systems -- 8.2.11 Acoustic Emission Interrogator (OptimAE) -- 8.2.12 OFS Applications in Aeronautics -- 8.3 Strain-Based SHM -- References -- Chapter 9: Data Reduction Strategies -- 9.1 Introduction -- 9.2 Signal Processing -- 9.3 Data Reduction Strategies -- 9.3.1 Sampling Rates of Different SHM Methods -- 9.3.1.1 Ultrasonics -- 9.3.1.2 Vibration-Based Methods -- 9.3.1.3 Acoustic Emission -- 9.3.1.4 Strain Monitoring -- 9.3.2 Established Approaches for Data Reduction -- 9.3.3 Open Challenges for Data Reduction in SHM Systems -- 9.3.3.1 Ultrasonic Systems -- 9.3.3.2 Reliability Issues Related to Loss of Information Via Data Reduction -- 9.4 Wireless Sensing Considerations -- 9.4.1 Network Topologies -- 9.4.2 Data Rates -- 9.4.3 Synchronization -- 9.4.4 Power Management and Consumption -- 9.4.5 Future Developments in Energy Harvesting and Power Management -- 9.5 Data Management -- 9.5.1 Reliability -- 9.5.2 Liability Issues -- 9.5.3 Ground-Based Systems -- 9.6 Conclusions -- References -- Chapter 10: Conclusions -- 10.1 Overview of the SHM Methods for Aerospace Integration -- 10.1.1 Ultrasonic Guided Wave Based Monitoring -- 10.1.2 Vibration-Based Monitoring -- 10.1.3 Acoustic Emission Monitoring -- 10.1.4 Strain-Based Monitoring -- 10.2 Defect Detectability.
10.3 Advantages and Disadvantages of SHM Techniques -- 10.4 Roadmap for SHM Integration in Future Aircraft -- 10.5 Future Research Directions -- Correction to: Structural Health Monitoring Damage Detection Systems for Aerospace.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Jasiūnienė, Elena.
Print version: Sause, Markus G. R. Structural Health Monitoring Damage Detection Systems for Aerospace Cham : Springer International Publishing AG,c2021 9783030721916
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6733486 Click to View
language English
format eBook
author Sause, Markus G. R.
spellingShingle Sause, Markus G. R.
Structural Health Monitoring Damage Detection Systems for Aerospace.
Springer Aerospace Technology Series
Intro -- Preface -- Acknowledgment -- Contents -- Contributors -- Chapter 1: Introduction -- Chapter 2: Monitoring Tasks in Aerospace -- 2.1 Condition Monitoring -- 2.2 Operation Monitoring (OM) -- 2.3 Damage Monitoring (DM) -- 2.4 Challenges -- References -- Chapter 3: Defect Types -- 3.1 Metallic Materials -- 3.1.1 Defects During the Manufacturing Process -- 3.1.2 Defects During In-service Conditions -- 3.1.2.1 Fatigue -- 3.1.2.2 Corrosion -- 3.1.2.3 Creep -- 3.1.2.4 Operational Overload -- 3.1.2.5 Wear -- 3.1.2.6 Extreme Weather Conditions -- 3.1.2.7 Miscellaneous Defect Types in Metals -- 3.2 Composite Materials -- 3.2.1 Disbonds -- 3.2.2 Delamination -- 3.2.3 Foreign Inclusion -- 3.2.4 Matrix Cracking -- 3.2.5 Porosity -- 3.2.6 Fibre Breakage -- 3.2.7 Other Composite Laminate Typical Defects -- 3.2.8 Typical Honeycomb Core Defects -- 3.2.9 Typical Foam Core Defects -- 3.2.10 Ingress of Moisture and Temperature -- 3.2.11 Fatigue -- 3.3 Defects in Coatings -- 3.3.1 Defects During the Manufacturing Process -- 3.3.2 Defects During In-service Conditions -- 3.4 Defects in Joints -- 3.4.1 Adhesively Bonded Joints -- 3.4.2 Friction Stir-Welded Joints -- 3.5 Concluding Remarks -- References -- Chapter 4: Aerospace Requirements -- 4.1 Power Consumption -- 4.2 System Reliability/Durability -- 4.3 Effect of Operational Conditions -- 4.4 Size/Weight Restrictions -- 4.5 Optimal Sensor Placement -- 4.6 Summary -- References -- Chapter 5: Ultrasonic Methods -- 5.1 Introduction to Ultrasonic Inspection -- 5.2 Ultrasonic Guided Wave (GW) Inspection -- 5.2.1 Governing Equations of GW Wave Propagation -- 5.2.1.1 Waves in Unbounded Media -- 5.2.1.2 Boundary Conditions -- 5.2.1.3 Dispersion Relation -- 5.2.2 Active and Passive Guided Wave Inspection -- 5.2.3 Dispersion and Attenuation -- 5.2.4 Guided Wave Excitation and Mode Selection -- 5.3 Defect Detection.
5.3.1 Defect Localisation and Imaging: Sparse, Phased Arrays and Guided Wave Tomography -- 5.3.2 Guided Wave Interaction with Actual Structural Defect -- 5.4 Reliability of SHM Systems -- 5.4.1 Basic Concepts of POD and PFA -- 5.4.2 Sources of Variability of SHM System -- 5.4.3 Analysis of Environmental and Operational Conditions -- 5.4.4 POD Assessment Solutions -- 5.4.5 Model-Assisted POD for SHM System -- 5.5 Guided Wave Applications to SHM of Aerospace Components -- 5.6 Summary -- References -- Chapter 6: Vibration Response-Based Damage Detection -- 6.1 Introduction -- 6.2 The Rationale of Vibration-Based Methods -- 6.3 Environmental and Operational Influences -- 6.4 Modal-Based Methods and Damage Features -- 6.4.1 Natural Frequencies -- 6.4.2 Mode Shapes -- 6.4.3 Modal Slope -- 6.4.4 Modal Curvature -- 6.4.5 Strain Energy -- 6.4.6 Damping -- 6.4.7 Interpolation Error -- 6.5 Time Series Methods -- 6.5.1 Autoregressive Parameters -- 6.5.2 Intrinsic Mode Function and Hilbert Spectrum -- 6.5.3 Signal Components -- 6.5.4 Damage Indices Based on Extracted Features -- 6.5.5 Singular Spectrum Analysis (SSA) -- 6.5.6 First-Order Eigen Perturbation (FOEP) Technique -- 6.6 Time-Frequency Methods -- 6.6.1 Scalogram and Spectrogram -- 6.7 Drawbacks and Limitations -- 6.8 Case Studies -- 6.8.1 Vibration-Based Damage Detection in a Composite Plate by Means of Acceleration Responses -- 6.8.2 Numerical Comparison of Modal-Based Methods for Damage Detection -- 6.8.3 Vibration-Based Monitoring of a Scaled Wind Turbine Blade by Means of Acceleration and Strain Responses -- 6.9 Conclusions -- References -- Chapter 7: Acoustic Emission -- 7.1 Introduction -- 7.2 Basic Experimental Details and Parameters -- 7.3 Fracture Mode Characterization in Plate Structures -- 7.3.1 AE Source Types -- 7.3.2 Procedures for AE Source Identification -- 7.4 Localization.
7.5 Influence of Propagation -- 7.6 Different Sensor Types -- 7.7 Dedicated Aeronautics Applications and Examples -- 7.8 General Considerations -- References -- Chapter 8: Strain Monitoring -- 8.1 Strain Gauges -- 8.2 Optical Fiber Sensors -- 8.2.1 Introduction -- 8.2.2 Types of Optical Fiber Sensors -- 8.2.3 Interferometry -- 8.2.4 Mach-Zehnder -- 8.2.5 Michelson Interferometer -- 8.2.6 Sagnac Interferometer -- 8.2.7 Fabry-Pérot -- 8.2.8 Fiber Bragg Grating Sensors -- 8.2.9 Other FBG Grating Structures -- 8.2.10 State-of-the Art Damage Detection Systems -- 8.2.11 Acoustic Emission Interrogator (OptimAE) -- 8.2.12 OFS Applications in Aeronautics -- 8.3 Strain-Based SHM -- References -- Chapter 9: Data Reduction Strategies -- 9.1 Introduction -- 9.2 Signal Processing -- 9.3 Data Reduction Strategies -- 9.3.1 Sampling Rates of Different SHM Methods -- 9.3.1.1 Ultrasonics -- 9.3.1.2 Vibration-Based Methods -- 9.3.1.3 Acoustic Emission -- 9.3.1.4 Strain Monitoring -- 9.3.2 Established Approaches for Data Reduction -- 9.3.3 Open Challenges for Data Reduction in SHM Systems -- 9.3.3.1 Ultrasonic Systems -- 9.3.3.2 Reliability Issues Related to Loss of Information Via Data Reduction -- 9.4 Wireless Sensing Considerations -- 9.4.1 Network Topologies -- 9.4.2 Data Rates -- 9.4.3 Synchronization -- 9.4.4 Power Management and Consumption -- 9.4.5 Future Developments in Energy Harvesting and Power Management -- 9.5 Data Management -- 9.5.1 Reliability -- 9.5.2 Liability Issues -- 9.5.3 Ground-Based Systems -- 9.6 Conclusions -- References -- Chapter 10: Conclusions -- 10.1 Overview of the SHM Methods for Aerospace Integration -- 10.1.1 Ultrasonic Guided Wave Based Monitoring -- 10.1.2 Vibration-Based Monitoring -- 10.1.3 Acoustic Emission Monitoring -- 10.1.4 Strain-Based Monitoring -- 10.2 Defect Detectability.
10.3 Advantages and Disadvantages of SHM Techniques -- 10.4 Roadmap for SHM Integration in Future Aircraft -- 10.5 Future Research Directions -- Correction to: Structural Health Monitoring Damage Detection Systems for Aerospace.
author_facet Sause, Markus G. R.
Jasiūnienė, Elena.
author_variant m g r s mgr mgrs
author2 Jasiūnienė, Elena.
author2_variant e j ej
author2_role TeilnehmendeR
author_sort Sause, Markus G. R.
title Structural Health Monitoring Damage Detection Systems for Aerospace.
title_full Structural Health Monitoring Damage Detection Systems for Aerospace.
title_fullStr Structural Health Monitoring Damage Detection Systems for Aerospace.
title_full_unstemmed Structural Health Monitoring Damage Detection Systems for Aerospace.
title_auth Structural Health Monitoring Damage Detection Systems for Aerospace.
title_new Structural Health Monitoring Damage Detection Systems for Aerospace.
title_sort structural health monitoring damage detection systems for aerospace.
series Springer Aerospace Technology Series
series2 Springer Aerospace Technology Series
publisher Springer International Publishing AG,
publishDate 2021
physical 1 online resource (292 pages)
edition 1st ed.
contents Intro -- Preface -- Acknowledgment -- Contents -- Contributors -- Chapter 1: Introduction -- Chapter 2: Monitoring Tasks in Aerospace -- 2.1 Condition Monitoring -- 2.2 Operation Monitoring (OM) -- 2.3 Damage Monitoring (DM) -- 2.4 Challenges -- References -- Chapter 3: Defect Types -- 3.1 Metallic Materials -- 3.1.1 Defects During the Manufacturing Process -- 3.1.2 Defects During In-service Conditions -- 3.1.2.1 Fatigue -- 3.1.2.2 Corrosion -- 3.1.2.3 Creep -- 3.1.2.4 Operational Overload -- 3.1.2.5 Wear -- 3.1.2.6 Extreme Weather Conditions -- 3.1.2.7 Miscellaneous Defect Types in Metals -- 3.2 Composite Materials -- 3.2.1 Disbonds -- 3.2.2 Delamination -- 3.2.3 Foreign Inclusion -- 3.2.4 Matrix Cracking -- 3.2.5 Porosity -- 3.2.6 Fibre Breakage -- 3.2.7 Other Composite Laminate Typical Defects -- 3.2.8 Typical Honeycomb Core Defects -- 3.2.9 Typical Foam Core Defects -- 3.2.10 Ingress of Moisture and Temperature -- 3.2.11 Fatigue -- 3.3 Defects in Coatings -- 3.3.1 Defects During the Manufacturing Process -- 3.3.2 Defects During In-service Conditions -- 3.4 Defects in Joints -- 3.4.1 Adhesively Bonded Joints -- 3.4.2 Friction Stir-Welded Joints -- 3.5 Concluding Remarks -- References -- Chapter 4: Aerospace Requirements -- 4.1 Power Consumption -- 4.2 System Reliability/Durability -- 4.3 Effect of Operational Conditions -- 4.4 Size/Weight Restrictions -- 4.5 Optimal Sensor Placement -- 4.6 Summary -- References -- Chapter 5: Ultrasonic Methods -- 5.1 Introduction to Ultrasonic Inspection -- 5.2 Ultrasonic Guided Wave (GW) Inspection -- 5.2.1 Governing Equations of GW Wave Propagation -- 5.2.1.1 Waves in Unbounded Media -- 5.2.1.2 Boundary Conditions -- 5.2.1.3 Dispersion Relation -- 5.2.2 Active and Passive Guided Wave Inspection -- 5.2.3 Dispersion and Attenuation -- 5.2.4 Guided Wave Excitation and Mode Selection -- 5.3 Defect Detection.
5.3.1 Defect Localisation and Imaging: Sparse, Phased Arrays and Guided Wave Tomography -- 5.3.2 Guided Wave Interaction with Actual Structural Defect -- 5.4 Reliability of SHM Systems -- 5.4.1 Basic Concepts of POD and PFA -- 5.4.2 Sources of Variability of SHM System -- 5.4.3 Analysis of Environmental and Operational Conditions -- 5.4.4 POD Assessment Solutions -- 5.4.5 Model-Assisted POD for SHM System -- 5.5 Guided Wave Applications to SHM of Aerospace Components -- 5.6 Summary -- References -- Chapter 6: Vibration Response-Based Damage Detection -- 6.1 Introduction -- 6.2 The Rationale of Vibration-Based Methods -- 6.3 Environmental and Operational Influences -- 6.4 Modal-Based Methods and Damage Features -- 6.4.1 Natural Frequencies -- 6.4.2 Mode Shapes -- 6.4.3 Modal Slope -- 6.4.4 Modal Curvature -- 6.4.5 Strain Energy -- 6.4.6 Damping -- 6.4.7 Interpolation Error -- 6.5 Time Series Methods -- 6.5.1 Autoregressive Parameters -- 6.5.2 Intrinsic Mode Function and Hilbert Spectrum -- 6.5.3 Signal Components -- 6.5.4 Damage Indices Based on Extracted Features -- 6.5.5 Singular Spectrum Analysis (SSA) -- 6.5.6 First-Order Eigen Perturbation (FOEP) Technique -- 6.6 Time-Frequency Methods -- 6.6.1 Scalogram and Spectrogram -- 6.7 Drawbacks and Limitations -- 6.8 Case Studies -- 6.8.1 Vibration-Based Damage Detection in a Composite Plate by Means of Acceleration Responses -- 6.8.2 Numerical Comparison of Modal-Based Methods for Damage Detection -- 6.8.3 Vibration-Based Monitoring of a Scaled Wind Turbine Blade by Means of Acceleration and Strain Responses -- 6.9 Conclusions -- References -- Chapter 7: Acoustic Emission -- 7.1 Introduction -- 7.2 Basic Experimental Details and Parameters -- 7.3 Fracture Mode Characterization in Plate Structures -- 7.3.1 AE Source Types -- 7.3.2 Procedures for AE Source Identification -- 7.4 Localization.
7.5 Influence of Propagation -- 7.6 Different Sensor Types -- 7.7 Dedicated Aeronautics Applications and Examples -- 7.8 General Considerations -- References -- Chapter 8: Strain Monitoring -- 8.1 Strain Gauges -- 8.2 Optical Fiber Sensors -- 8.2.1 Introduction -- 8.2.2 Types of Optical Fiber Sensors -- 8.2.3 Interferometry -- 8.2.4 Mach-Zehnder -- 8.2.5 Michelson Interferometer -- 8.2.6 Sagnac Interferometer -- 8.2.7 Fabry-Pérot -- 8.2.8 Fiber Bragg Grating Sensors -- 8.2.9 Other FBG Grating Structures -- 8.2.10 State-of-the Art Damage Detection Systems -- 8.2.11 Acoustic Emission Interrogator (OptimAE) -- 8.2.12 OFS Applications in Aeronautics -- 8.3 Strain-Based SHM -- References -- Chapter 9: Data Reduction Strategies -- 9.1 Introduction -- 9.2 Signal Processing -- 9.3 Data Reduction Strategies -- 9.3.1 Sampling Rates of Different SHM Methods -- 9.3.1.1 Ultrasonics -- 9.3.1.2 Vibration-Based Methods -- 9.3.1.3 Acoustic Emission -- 9.3.1.4 Strain Monitoring -- 9.3.2 Established Approaches for Data Reduction -- 9.3.3 Open Challenges for Data Reduction in SHM Systems -- 9.3.3.1 Ultrasonic Systems -- 9.3.3.2 Reliability Issues Related to Loss of Information Via Data Reduction -- 9.4 Wireless Sensing Considerations -- 9.4.1 Network Topologies -- 9.4.2 Data Rates -- 9.4.3 Synchronization -- 9.4.4 Power Management and Consumption -- 9.4.5 Future Developments in Energy Harvesting and Power Management -- 9.5 Data Management -- 9.5.1 Reliability -- 9.5.2 Liability Issues -- 9.5.3 Ground-Based Systems -- 9.6 Conclusions -- References -- Chapter 10: Conclusions -- 10.1 Overview of the SHM Methods for Aerospace Integration -- 10.1.1 Ultrasonic Guided Wave Based Monitoring -- 10.1.2 Vibration-Based Monitoring -- 10.1.3 Acoustic Emission Monitoring -- 10.1.4 Strain-Based Monitoring -- 10.2 Defect Detectability.
10.3 Advantages and Disadvantages of SHM Techniques -- 10.4 Roadmap for SHM Integration in Future Aircraft -- 10.5 Future Research Directions -- Correction to: Structural Health Monitoring Damage Detection Systems for Aerospace.
isbn 9783030721923
9783030721916
callnumber-first T - Technology
callnumber-subject TA - General and Civil Engineering
callnumber-label TA418
callnumber-sort TA 3418.5 284
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6733486
illustrated Not Illustrated
oclc_num 1272955903
work_keys_str_mv AT sausemarkusgr structuralhealthmonitoringdamagedetectionsystemsforaerospace
AT jasiunieneelena structuralhealthmonitoringdamagedetectionsystemsforaerospace
status_str n
ids_txt_mv (MiAaPQ)5006733486
(Au-PeEL)EBL6733486
(OCoLC)1272955903
carrierType_str_mv cr
hierarchy_parent_title Springer Aerospace Technology Series
is_hierarchy_title Structural Health Monitoring Damage Detection Systems for Aerospace.
container_title Springer Aerospace Technology Series
author2_original_writing_str_mv noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331059958906880
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07537nam a22004453i 4500</leader><controlfield tag="001">5006733486</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073844.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2021 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030721923</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030721916</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006733486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6733486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1272955903</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA418.5-.84</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sause, Markus G. R.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structural Health Monitoring Damage Detection Systems for Aerospace.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (292 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer Aerospace Technology Series</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgment -- Contents -- Contributors -- Chapter 1: Introduction -- Chapter 2: Monitoring Tasks in Aerospace -- 2.1 Condition Monitoring -- 2.2 Operation Monitoring (OM) -- 2.3 Damage Monitoring (DM) -- 2.4 Challenges -- References -- Chapter 3: Defect Types -- 3.1 Metallic Materials -- 3.1.1 Defects During the Manufacturing Process -- 3.1.2 Defects During In-service Conditions -- 3.1.2.1 Fatigue -- 3.1.2.2 Corrosion -- 3.1.2.3 Creep -- 3.1.2.4 Operational Overload -- 3.1.2.5 Wear -- 3.1.2.6 Extreme Weather Conditions -- 3.1.2.7 Miscellaneous Defect Types in Metals -- 3.2 Composite Materials -- 3.2.1 Disbonds -- 3.2.2 Delamination -- 3.2.3 Foreign Inclusion -- 3.2.4 Matrix Cracking -- 3.2.5 Porosity -- 3.2.6 Fibre Breakage -- 3.2.7 Other Composite Laminate Typical Defects -- 3.2.8 Typical Honeycomb Core Defects -- 3.2.9 Typical Foam Core Defects -- 3.2.10 Ingress of Moisture and Temperature -- 3.2.11 Fatigue -- 3.3 Defects in Coatings -- 3.3.1 Defects During the Manufacturing Process -- 3.3.2 Defects During In-service Conditions -- 3.4 Defects in Joints -- 3.4.1 Adhesively Bonded Joints -- 3.4.2 Friction Stir-Welded Joints -- 3.5 Concluding Remarks -- References -- Chapter 4: Aerospace Requirements -- 4.1 Power Consumption -- 4.2 System Reliability/Durability -- 4.3 Effect of Operational Conditions -- 4.4 Size/Weight Restrictions -- 4.5 Optimal Sensor Placement -- 4.6 Summary -- References -- Chapter 5: Ultrasonic Methods -- 5.1 Introduction to Ultrasonic Inspection -- 5.2 Ultrasonic Guided Wave (GW) Inspection -- 5.2.1 Governing Equations of GW Wave Propagation -- 5.2.1.1 Waves in Unbounded Media -- 5.2.1.2 Boundary Conditions -- 5.2.1.3 Dispersion Relation -- 5.2.2 Active and Passive Guided Wave Inspection -- 5.2.3 Dispersion and Attenuation -- 5.2.4 Guided Wave Excitation and Mode Selection -- 5.3 Defect Detection.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3.1 Defect Localisation and Imaging: Sparse, Phased Arrays and Guided Wave Tomography -- 5.3.2 Guided Wave Interaction with Actual Structural Defect -- 5.4 Reliability of SHM Systems -- 5.4.1 Basic Concepts of POD and PFA -- 5.4.2 Sources of Variability of SHM System -- 5.4.3 Analysis of Environmental and Operational Conditions -- 5.4.4 POD Assessment Solutions -- 5.4.5 Model-Assisted POD for SHM System -- 5.5 Guided Wave Applications to SHM of Aerospace Components -- 5.6 Summary -- References -- Chapter 6: Vibration Response-Based Damage Detection -- 6.1 Introduction -- 6.2 The Rationale of Vibration-Based Methods -- 6.3 Environmental and Operational Influences -- 6.4 Modal-Based Methods and Damage Features -- 6.4.1 Natural Frequencies -- 6.4.2 Mode Shapes -- 6.4.3 Modal Slope -- 6.4.4 Modal Curvature -- 6.4.5 Strain Energy -- 6.4.6 Damping -- 6.4.7 Interpolation Error -- 6.5 Time Series Methods -- 6.5.1 Autoregressive Parameters -- 6.5.2 Intrinsic Mode Function and Hilbert Spectrum -- 6.5.3 Signal Components -- 6.5.4 Damage Indices Based on Extracted Features -- 6.5.5 Singular Spectrum Analysis (SSA) -- 6.5.6 First-Order Eigen Perturbation (FOEP) Technique -- 6.6 Time-Frequency Methods -- 6.6.1 Scalogram and Spectrogram -- 6.7 Drawbacks and Limitations -- 6.8 Case Studies -- 6.8.1 Vibration-Based Damage Detection in a Composite Plate by Means of Acceleration Responses -- 6.8.2 Numerical Comparison of Modal-Based Methods for Damage Detection -- 6.8.3 Vibration-Based Monitoring of a Scaled Wind Turbine Blade by Means of Acceleration and Strain Responses -- 6.9 Conclusions -- References -- Chapter 7: Acoustic Emission -- 7.1 Introduction -- 7.2 Basic Experimental Details and Parameters -- 7.3 Fracture Mode Characterization in Plate Structures -- 7.3.1 AE Source Types -- 7.3.2 Procedures for AE Source Identification -- 7.4 Localization.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.5 Influence of Propagation -- 7.6 Different Sensor Types -- 7.7 Dedicated Aeronautics Applications and Examples -- 7.8 General Considerations -- References -- Chapter 8: Strain Monitoring -- 8.1 Strain Gauges -- 8.2 Optical Fiber Sensors -- 8.2.1 Introduction -- 8.2.2 Types of Optical Fiber Sensors -- 8.2.3 Interferometry -- 8.2.4 Mach-Zehnder -- 8.2.5 Michelson Interferometer -- 8.2.6 Sagnac Interferometer -- 8.2.7 Fabry-Pérot -- 8.2.8 Fiber Bragg Grating Sensors -- 8.2.9 Other FBG Grating Structures -- 8.2.10 State-of-the Art Damage Detection Systems -- 8.2.11 Acoustic Emission Interrogator (OptimAE) -- 8.2.12 OFS Applications in Aeronautics -- 8.3 Strain-Based SHM -- References -- Chapter 9: Data Reduction Strategies -- 9.1 Introduction -- 9.2 Signal Processing -- 9.3 Data Reduction Strategies -- 9.3.1 Sampling Rates of Different SHM Methods -- 9.3.1.1 Ultrasonics -- 9.3.1.2 Vibration-Based Methods -- 9.3.1.3 Acoustic Emission -- 9.3.1.4 Strain Monitoring -- 9.3.2 Established Approaches for Data Reduction -- 9.3.3 Open Challenges for Data Reduction in SHM Systems -- 9.3.3.1 Ultrasonic Systems -- 9.3.3.2 Reliability Issues Related to Loss of Information Via Data Reduction -- 9.4 Wireless Sensing Considerations -- 9.4.1 Network Topologies -- 9.4.2 Data Rates -- 9.4.3 Synchronization -- 9.4.4 Power Management and Consumption -- 9.4.5 Future Developments in Energy Harvesting and Power Management -- 9.5 Data Management -- 9.5.1 Reliability -- 9.5.2 Liability Issues -- 9.5.3 Ground-Based Systems -- 9.6 Conclusions -- References -- Chapter 10: Conclusions -- 10.1 Overview of the SHM Methods for Aerospace Integration -- 10.1.1 Ultrasonic Guided Wave Based Monitoring -- 10.1.2 Vibration-Based Monitoring -- 10.1.3 Acoustic Emission Monitoring -- 10.1.4 Strain-Based Monitoring -- 10.2 Defect Detectability.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.3 Advantages and Disadvantages of SHM Techniques -- 10.4 Roadmap for SHM Integration in Future Aircraft -- 10.5 Future Research Directions -- Correction to: Structural Health Monitoring Damage Detection Systems for Aerospace.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jasiūnienė, Elena.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Sause, Markus G. R.</subfield><subfield code="t">Structural Health Monitoring Damage Detection Systems for Aerospace</subfield><subfield code="d">Cham : Springer International Publishing AG,c2021</subfield><subfield code="z">9783030721916</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer Aerospace Technology Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6733486</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>