Molecular Beams in Physics and Chemistry : : From Otto Stern's Pioneering Exploits to Present-Day Feats.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (639 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • 1 An Homage to Otto Stern
  • 1 The Frankfurt Conference
  • 2 Learning About Otto Stern and Molecular Beams
  • 3 Meeting Otto Stern and Hearing Stories from Him
  • 4 Fests with Otto Stern Present
  • 5 Centennial of Otto Stern and Beyond
  • 6 Epilogue
  • Appendix: A Historical Puzzle
  • Appendix: Lyrics of Cole Porter's "Experiment"
  • References
  • 2 A Greeting from Hamburg to the Otto Stern Symposium
  • Part I Historical Perspectives
  • 3 My Uncle Otto Stern
  • References
  • 4 My Great Uncle
  • 5 Otto Stern's Molecular Beam Method and Its Impact on Quantum Physics
  • 1 Prolog
  • 2 Otto Stern's Seminal Experiments
  • 2.1 The Stern-Gerlach Experiment
  • 2.2 The Three-Stage Stern-Gerlach Experiment
  • 2.3 Experimental Evidence for de Broglie's Matter Waves
  • 2.4 Measurements of the Magnetic Dipole Moment of the Proton and the Deuteron
  • 2.5 Experimental Demonstration of Momentum Transfer Upon Absorption or Emission of a Photon
  • 2.6 The Experimental Verification of the Maxwell-Boltzmann Velocity Distribution via Deflection of a Molecular Beam by Gravity
  • 3 Epilog
  • References
  • 6 Otto Stern-With Einstein in Prague and in Zürich
  • 1 One Semester in Prague
  • 2 Interacting with the Stars at ETH
  • 3 The "Zero-Point Energy" Paper
  • 4 The Habilitation Process
  • 5 Concluding Remarks
  • References
  • 7 Our Enduring Legacy from Otto Stern
  • 1 Introduction
  • 2 Preface: A View of Otto Stern's Legacy in 1988
  • 3 Portraying Our Enduring Legacy Today
  • 4 The Nobel Prizes of Stern and Rabi
  • 5 Links Connecting the AMO Nobel Laureates to Otto Stern
  • 6 Otto Stern's Heritage in Chemistry
  • 7 Epigraph
  • Appendix: A Summary of Links between the AMO Nobel Laureates and Stern/Rabi
  • References
  • 8 Walther Gerlach (1889-1979): Precision Physicist, Educator and Research Organizer, Historian of Science.
  • 1 Introduction
  • 2 Walther Gerlach's Social Background, Upbringing, and Education
  • 3 Precision Physics
  • 3.1 Black-Body Radiation
  • 3.2 Walther Gerlach and the Stern-Gerlach Experiment
  • 3.3 Radiation Pressure
  • 4 Gerlach's Involvement in the Uranprojekt
  • 5 Gerlach's Work in the History of Science
  • 6 In Conclusion
  • References
  • 9 100 Years Molecular Beam Method Reproduction of Otto Stern's Atomic Beam Velocity Measurement
  • 1 Otto Stern's Historic Atomic Beam Velocity Measurement
  • 2 Reproduction of Otto Stern's Atomic Beam Velocity Measurement
  • 2.1 Reconstruction of the Apparatus
  • 2.2 The Trajectories
  • 2.3 Measurement of the Rotation Frequency
  • 2.4 Mean Free-Path and Quality of the Vacuum
  • 2.5 Measurement of the Temperature of the Filament
  • 2.6 The Improved Experimental Setup and the Decisive Measurement
  • References
  • 10 Wilhelm Heinrich Heraeus-Doctoral Student at the University Frankfurt
  • Reference
  • Part II Foundations of Quantum Physics and Precision Measurements
  • 11 Quantum or Classical Perception of Atomic Motion
  • 1 Introduction
  • 1.1 Particle or Wave or Particle Ensemble?
  • 2 Interpretation of the Wavefunction
  • 3 The Imaging Theorem
  • 4 The Quantum to Classical Transition
  • 4.1 Historical Context
  • 4.2 Schrödinger, Heisenberg and Kennard.
  • 4.3 Ehrenfest and Einstein
  • 5 Consequences of the IT and the Ensemble Picture
  • 5.1 The Schrödinger Cat
  • 5.2 The ``Mott Problem'' of Track Structure
  • 5.3 Entanglement and Wavefunction Collapse
  • 5.4 Quantum Interference
  • 6 The Imaging Theorem and Decoherence Theory: IT and DT
  • 6.1 Decoherence
  • 6.2 Unitary Evolution
  • 7 Conclusions
  • 8 Appendix
  • References
  • 12 The Precision Limits in a Single-Event Quantum Measurement of Electron Momentum and Position
  • 1 Introduction
  • 2 Scheme of a Quantum Measurement.
  • 2.1 Time Evolution of a Quantum Measurement
  • 3 Electron Momentum (Velocity) Measurement by Time-of-Flight (TOF) Trajectory Imaging
  • 3.1 The Experimental Scheme for Momentum (Velocity) Measurement
  • 3.2 Momentum (Velocity) Measurement and Its Achievable Resolution for an Electron
  • 4 Measurement of Angular Momentum of a Single Electron
  • 5 Electron-Position Measurement and Achievable Resolution
  • 6 Product of Precisions in Momentum and Precision in Position in a Real Measurement of a Freely Moving Single Electron
  • 7 Conclusion
  • Appendix A
  • Appendix B
  • Appendix C
  • Appendix D
  • References
  • 13 Precision Physics in Penning Traps Using the Continuous Stern-Gerlach Effect
  • 1 Introduction
  • 2 Penning-Trap Properties
  • 3 Single Ion Detection by Induced Image Currents
  • 4 The Masses of the Proton and Antiproton
  • 5 The g-Factor of the Bound Electron
  • 6 The Continuous Stern-Gerlach Effect
  • 7 Measurement of g-Factors
  • 8 The Electron Mass
  • 9 What Comes Next?
  • 10 Summary
  • References
  • 14 Stern-Gerlach Interferometry with the Atom Chip
  • 1 Introduction
  • 2 Particle Sources
  • 3 The Atom Chip Stern-Gerlach Beam Splitter
  • 4 Half-Loop Stern-Gerlach Interferometer
  • 5 Full-Loop Stern-Gerlach Interferometer
  • 6 Applications
  • 6.1 Clock Interferometery
  • 6.2 Clock Complementarity
  • 6.3 Geometric Phase
  • 6.4 T3 Stern-Gerlach Interferometer
  • 7 Outlook
  • 7.1 SGI with Single Ions
  • 7.2 SGI with Massive Objects
  • References
  • 15 Testing Fundamental Physics by Using Levitated Mechanical Systems
  • 1 Introductory Remarks
  • 2 Testing Quantum Mechanics with Collapse Models
  • 2.1 Tests of Quantum Mechanics by Matter-Wave Interferometry
  • 2.2 Non-interferometric Mechanical Tests of Quantum Mechanics
  • 2.3 Concluding Remarks on Testing Quantum Mechanics in the Context of Collapse Models.
  • 3 Testing the Interplay Between Quantum Mechanics and Gravity
  • 3.1 Proposals for Experimental Tests of the Schrödinger-Newton equation
  • 3.2 Gravitational Decoherence Effects
  • 3.3 The Gravity of a Quantum State-Revisited
  • 3.4 Concluding Remarks on Testing the Interplay of Quantum Mechanics and Gravity in the Low Energy Regime
  • 4 Simulation of the Stern Gerlach Experiment Using Wigner Functions
  • References
  • Part III Femto- and Atto-Science
  • 16 Inducing Enantiosensitive Permanent Multipoles in Isotropic Samples with Two-Color Fields
  • 1 Introduction
  • 2 Exciting an Enantiosensitive Permanent Dipole
  • 2.1 A Simple Picture of the Mechanism Leading to the Enantiosensitive Permanent Dipole
  • 3 Exciting an Enantiosensitive Permanent Quadrupole
  • 4 Conclusions
  • References
  • 17 Ultra-fast Dynamics in Quantum Systems Revealed by Particle Motion as Clock
  • 1 Introduction
  • 2 Ultra-fast Chronometer Mechanisms Using Fast Moving Particles as Clock
  • 2.1 Historic Life-Time Measurements with Nano- and Picosecond Precision
  • 2.2 Quantum Beat Structures as Ultra-fast Chronometers
  • 3 Experimental Examples of Quantum-Beat Measurements in Ion-Atom/Molecule Collisions
  • 3.1 Quantum Beats in Quasi-molecular X-Ray Emission
  • 3.2 Young-Type Interference Structures in Slow H2+ +He Collisions
  • 3.3 A Proposal: Scheme of an Ion-Atom/Molecule Pump &amp
  • Probe Technique Approaching 10 Zeptoseconds Time Resolution
  • 4 Conclusion
  • References
  • 18 High-Resolution Momentum Imaging-From Stern's Molecular Beam Method to the COLTRIMS Reaction Microscope
  • 1 Introduction
  • 2 History of Stern's Molecular Beam Method: The Technological Milestones
  • 3 The C-REMI Approach
  • 3.1 The Development of C-REMI Components
  • 4 The Early Benchmark Results
  • 4.1 Q-Value Measurements.
  • 4.2 Electron-Electron Contributions in the Ionization Process of Ion-Atom Collisions
  • 4.3 Momentum Spectroscopy in High-Energy Heavy Ion Atom Collisions
  • 4.4 Single-Photon Ionization
  • 4.5 Saddle Point Ionization Mechanism in Slow Ion-Atom Collisions
  • 4.6 Visualization of Virtual Contributions to the He Ground State
  • 5 Milestone Discoveries
  • 5.1 Multi-photon Processes-Experimental Verification of Re-Scattering Mechanism
  • 5.2 Single Photon Ionization of Molecules
  • 5.3 Multi-fragment Vector Correlations in Inner Shell Single-Photon Ionization Processes of Atoms and Molecules-Dynamics of Entangled Systems
  • 5.4 Single Photon Induced Interatomic Coulombic Decay
  • 5.5 Core-Hole Localization
  • 5.6 Efimov State of the He Trimer
  • 5.7 Imaging of Structural Chirality
  • 5.8 Spatial Imaging of the H2 Vibrational Wave Function
  • 5.9 Visualization of Directional Quantization of Quasi-Molecular Orbitals in Slow Ion-Atom Collisions
  • 5.10 Time-Resolving Studies Employing Coincidence Detection Techniques
  • 5.11 Proposed Experiments in Neutrino Physics
  • 6 Conclusion
  • References
  • Part IV Cold and Controlled Molecules
  • 19 STIRAP: A Historical Perspective and Some News
  • 1 What Is STIRAP?
  • 2 Background and Motivation
  • 3 The Vision and the Challenge
  • 4 An Intermediate Step: The Molecular Beam Laser
  • 5 The Breakthrough
  • 6 Some STIRAP Highlights that Followed
  • 7 Final Remarks
  • References
  • 20 Manipulation and Control of Molecular Beams: The Development of the Stark-Decelerator
  • 1 Introduction
  • 2 Deflection and Focusing of Molecular Beams
  • 3 Early Attempts to Decelerate or Accelerate Molecular Beams
  • 4 Deceleration of CO (a3Π) Molecules with Electric Fields
  • 5 Concluding Remarks
  • References
  • 21 Quantum Effects in Cold and Controlled Molecular Dynamics
  • 1 Introduction.
  • 2 Quantum Scattering Resonances in Cold Collisions.