Ray Tracing Gems II : : Next Generation Real-Time Rendering with DXR, Vulkan, and OptiX.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Berkeley, CA : : Apress L. P.,, 2021.
Ã2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (884 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Table of Contents
  • Preface
  • Foreword
  • CONTRIBUTORS
  • NOTATION
  • PART I RAY TRACING FOUNDATIONS
  • CHAPTER 1 A BREAKNECK SUMMARY OF PHOTOGRAPHIC TERMS (AND THEIR UTILITY TO RAY TRACING)
  • ABSTRACT
  • 1.1 INTRODUCTION
  • 1.2 DIGITAL SENSOR TECHNOLOGY
  • 1.3 FILM
  • 1.4 COMMON CAPTURE DIMENSIONS
  • 1.5 COMMON CAPTURE RESOLUTIONS
  • 1.6 LENSING
  • 1.7 SHUTTER
  • 1.8 EXPOSURE
  • 1.9 EQUIVALENCY
  • 1.10 PHYSICAL LENSES
  • 1.11 BOKEH
  • 1.12 VARIOUS LENS IMPERFECTIONS
  • 1.13 OPTICAL ELEMENTS
  • 1.14 ANAMORPHIC
  • 1.15 CAMERA MOVEMENT
  • REFERENCES
  • CHAPTER 2 RAY AXIS-ALIGNED BOUNDING BOX INTERSECTION
  • ABSTRACT
  • 2.1 THE METHOD
  • REFERENCES
  • CHAPTER 3 ESSENTIAL RAY GENERATION SHADERS
  • ABSTRACT
  • 3.1 INTRODUCTION
  • 3.2 CAMERA RAYS
  • 3.2.1 CAMERA SPACE
  • 3.2.2 NEAR AND FAR PLANES
  • 3.2.3 SUPERSAMPLING
  • 3.2.4 VIEW CAMERAS
  • 3.2.5 PARAMETERS
  • 3.3 PINHOLE PERSPECTIVE
  • 3.4 THIN LENS
  • 3.5 GENERALIZED PANINI
  • 3.6 FISHEYE
  • 3.7 LENSLET
  • 3.8 OCTAHEDRAL
  • 3.9 CUBE MAP
  • 3.10 ORTHOGRAPHIC
  • 3.11 FIBONACCI SPHERE
  • REFERENCES
  • CHAPTER 4 HACKING THE SHADOW TERMINATOR
  • ABSTRACT
  • 4.1 INTRODUCTION
  • 4.2 RELATED WORK
  • 4.3 MOVING THE INTERSECTION POINT IN HINDSIGHT
  • 4.4 ANALYSIS
  • 4.5 DISCUSSION AND LIMITATIONS
  • 4.6 CONCLUSION
  • REFERENCES
  • CHAPTER 5 SAMPLING TEXTURES WITH MISSING DERIVATIVES
  • ABSTRACT
  • 5.1 INTRODUCTION
  • 5.2 TEXTURE COORDINATE DERIVATIVES AT VISIBLE POINTS
  • 5.2.1 INPUTS AND NOTATION
  • 5.2.2 OVERVIEW
  • 5.2.3 WORLD-SPACE DERIVATIVES For
  • 5.2.4 FROM WORLD SPACE TO SCREEN SPACE
  • 5.2.5 DEPTH DERIVATIVES
  • 5.2.6 PUTTING IT ALL TOGETHER
  • 5.3 FURTHER APPLICATIONS
  • 5.3.1 TRILINEAR SAMPLING
  • 5.3.2 SECONDARY RAY INTERSECTION POINTS
  • 5.3.3 MATERIAL GRAPHS
  • 5.4 COMPARISON
  • 5.5 CONCLUSION
  • REFERENCES
  • CHAPTER 6 DIFFERENTIAL BARYCENTRIC COORDINATES
  • ABSTRACT.
  • 6.1 BACKGROUND
  • 6.2 METHOD
  • 6.3 CODE
  • REFERENCES
  • CHAPTER 7 TEXTURE COORDINATE GRADIENTS ESTIMATION FOR RAY CONES
  • ABSTRACT
  • 7.1 BACKGROUND
  • 7.2 RAY CONE GRADIENTS
  • 7.3 COMPARISON AND RESULTS
  • 7.4 SAMPLE CODE
  • 7.5 CONCLUSION
  • REFERENCES
  • CHAPTER 8 REFLECTION AND REFRACTION FORMULAS
  • ABSTRACT
  • 8.1 REFLECTION
  • 8.2 REFRACTION
  • REFERENCES
  • CHAPTER 9 THE SCHLICK FRESNEL APPROXIMATION
  • ABSTRACT
  • 9.1 INTRODUCTION
  • 9.2 THE FRESNEL EQUATIONS
  • 9.3 THE SCHLICK APPROXIMATION
  • 9.4 DIELECTRICS VS. CONDUCTORS
  • 9.5 APPROXIMATIONS FOR MODELING THE REFLECTANCE OF METALS
  • REFERENCES
  • CHAPTER 10 REFRACTION RAY CONES FOR TEXTURE LEVEL OF DETAIL
  • ABSTRACT
  • 10.1 INTRODUCTION
  • 10.2 OUR METHOD
  • 10.3 RESULTS
  • 10.4 CONCLUSION
  • REFERENCES
  • CHAPTER 11 HANDLING TRANSLUCENCY WITH REAL-TIME RAY TRACING
  • ABSTRACT
  • 11.1 CATEGORIES OF TRANSLUCENT MATERIAL
  • 11.2 OVERVIEW
  • 11.3 SINGLE TRANSLUCENT PASS
  • 11.4 PIPELINE SETUP
  • 11.5 VISIBILITY FOR SEMITRANSPARENT MATERIALS
  • 11.6 CONCLUSION
  • ACKNOWLEDGMENTS
  • REFERENCES
  • CHAPTER 12 MOTION BLUR CORNER CASES
  • ABSTRACT
  • 12.1 INTRODUCTION
  • 12.2 DEALING WITH VARYING MOTION SAMPLE COUNTS
  • 12.2.1 MOTIVATION
  • 12.2.2 TIME SAMPLE UNIFORMIZATION
  • 12.3 COMBINING TRANSFORMATION AND DEFORMATION MOTION
  • 12.4 INCOHERENT MOTION
  • 12.5 CONCLUSION
  • REFERENCES
  • CHAPTER 13 FAST SPECTRAL UPSAMPLING OF VOLUME ATTENUATION COEFFICIENTS
  • ABSTRACT
  • 13.1 INTRODUCTION
  • 13.1.1 KNOWN SOLUTIONS
  • 13.2 PROPOSED SOLUTION
  • 13.2.1 OPTIMIZING THRESHOLD VALUES
  • 13.2.2 EXAMPLE OPTIMIZED VALUES
  • 13.3 RESULTS
  • 13.4 CONCLUSION
  • REFERENCES
  • CHAPTER 14 THE REFERENCE PATH TRACER
  • ABSTRACT
  • 14.1 INTRODUCTION
  • 14.2 ALGORITHM
  • 14.3 IMPLEMENTATION
  • 14.3.1 ACCELERATION STRUCTURE MEMORY
  • 14.3.2 PRIMARY RAYS
  • 14.3.3 LOADING GEOMETRY AND MATERIAL PROPERTIES.
  • 14.3.4 RANDOM NUMBER GENERATION
  • 14.3.5 ACCUMULATION AND ANTIALIASING
  • 14.3.6 TRACING PATHS
  • 14.3.7 VIRTUAL LIGHTS AND SHADOW RAYS
  • SELECTING LIGHTS
  • 14.4 CONCLUSION
  • REFERENCES
  • PART II APIS AND TOOLS
  • CHAPTER 15 THE SHADER BINDING TABLE DEMYSTIFIED
  • ABSTRACT
  • 15.1 THE SHADER BINDING TABLE
  • 15.1.1 RAY GENERATION RECORDS
  • 15.1.2 HIT GROUP RECORDS
  • 15.1.3 MISS RECORDS
  • 15.2 SHADER RECORD INDEX CALCULATION
  • 15.2.1 HIT GROUP RECORDS
  • 15.2.2 MISS RECORDS
  • 15.3 API-SPECIFIC DETAILS
  • 15.3.1 DIRECTX RAYTRACING
  • EMBEDDED SHADER RECORD PARAMETERS
  • INSTANCE PARAMETERS
  • TRACE RAY PARAMETERS
  • 15.3.2 VULKAN KHR RAY TRACING
  • SHADER RECORDS AND PARAMETERS
  • INSTANCE PARAMETERS
  • TRACE RAY PARAMETERS
  • 15.3.3 OPTIX
  • SHADER RECORDS AND PARAMETERS
  • INSTANCE PARAMETERS
  • TRACE RAY PARAMETERS
  • 15.4 COMMON SHADER BINDING TABLE CONFIGURATIONS
  • 15.4.1 A BASIC RAY TRACER
  • 15.4.2 INSTANCING A BLAS WITH THE SAME HIT GROUP PARAMETERS
  • 15.4.3 DROPPING THE SHADOW HIT GROUP WHEN RENDERING OPAQUE GEOMETRIES
  • 15.4.4 A MINIMAL ONE OR TWO HIT GROUP RAY TRACER
  • 15.4.5 DYNAMICALLY UPDATING THE SBT
  • 15.5 SUMMARY
  • REFERENCES
  • CHAPTER 16 INTRODUCTION TO VULKAN RAY TRACING
  • ABSTRACT
  • 16.1 INTRODUCTION
  • 16.2 OVERVIEW
  • 16.3 GETTING STARTED
  • 16.4 THE VULKAN RAY TRACING PIPELINE
  • 16.5 HLSL/GLSL SUPPORT
  • 16.5.1 GLSL
  • 16.5.2 HLSL
  • SHADER STAGES
  • INTRINSIC VARIABLES AND FUNCTIONS
  • SHADER RECORD BUFFER AND LOCAL ROOT SIGNATURES
  • 16.6 RAY TRACING SHADER EXAMPLE
  • 16.7 OVERVIEW OF HOST INITIALIZATION
  • 16.8 VULKAN RAY TRACING SETUP
  • 16.8.1 ACCELERATION STRUCTURES
  • BOTTOM-LEVEL ACCELERATION STRUCTURE CONSTRUCTION
  • TOP-LEVEL ACCELERATION STRUCTURE CONSTRUCTION
  • 16.8.2 ACCELERATION STRUCTURE OPERATIONS
  • CLONING ACCELERATION STRUCTURES
  • REFITTING ACCELERATION STRUCTURES.
  • COMPACTING ACCELERATION STRUCTURES
  • SERIALIZING AND DESERIALIZING ACCELERATION STRUCTURES
  • DESCRIPTOR SET LAYOUTS AND PIPELINE LAYOUTS
  • 16.8.3 SHADER COMPILATION
  • 16.9 CREATING VULKAN RAY TRACING PIPELINES
  • 16.10 SHADER BINDING TABLES
  • 16.11 RAY DISPATCH
  • 16.12 ADDITIONAL RESOURCES
  • 16.13 CONCLUSION
  • ACKNOWLEDGMENTS
  • REFERENCES
  • CHAPTER 17 USING BINDLESS RESOURCES WITH DIRECTX RAYTRACING
  • ABSTRACT
  • 17.1 INTRODUCTION
  • 17.2 TRADITIONAL BINDING WITH DXR
  • 17.3 BINDLESS RESOURCES IN D3D12
  • 17.4 BINDLESS RESOURCES WITH DXR
  • 17.5 PRACTICAL IMPLICATIONS OF USING BINDLESS TECHNIQUES
  • 17.5.1 MINIMUM HARDWARE REQUIREMENTS
  • 17.5.2 VALIDATION AND DEBUGGING TOOLS
  • 17.5.3 CRASHES AND UNDEFINED BEHAVIOR
  • 17.6 UPCOMING D3D12 FEATURES
  • 17.7 CONCLUSION
  • REFERENCES
  • CHAPTER 18 WEBRAYS: RAY TRACING ON THE WEB
  • ABSTRACT
  • 18.1 INTRODUCTION
  • 18.2 FRAMEWORK ARCHITECTURE
  • 18.2.1 DESIGN GOALS
  • 18.2.2 HOST-SIDE API
  • 18.2.3 DEVICE-SIDE API
  • 18.2.4 ENGINE CORE
  • 18.2.5 ACCELERATION DATA STRUCTURES
  • 18.3 PROGRAMMING WITH WEBRAYS
  • 18.3.1 SETUP
  • 18.3.2 POPULATING THE ACCELERATION DATA STRUCTURES
  • 18.3.3 RAY AND INTERSECTION BUFFERS
  • 18.3.4 RAY GENERATION
  • 18.3.5 HOST-SIDE INTERSECTIONS
  • 18.3.6 DEVICE-SIDE INTERSECTIONS
  • 18.4 USE CASES
  • 18.4.1 AMBIENT OCCLUSION
  • 18.4.2 PATH TRACING
  • 18.4.3 HYBRID RENDERING
  • AMBIENT OCCLUSION
  • SHADOWS
  • REFLECTION AND REFRACTION
  • 18.4.4 RAY TRACING PROTOTYPING PLATFORM
  • 18.5 CONCLUSIONS AND FUTURE WORK
  • ACKNOWLEDGMENTS
  • REFERENCES
  • CHAPTER 19 VISUALIZING AND COMMUNICATING ERRORS IN RENDERED IMAGES
  • ABSTRACT
  • 19.1 INTRODUCTION
  • 19.2 FLIP
  • 19.2.1 LDR- FLIP
  • 19.2.2 HDR- FLIP
  • 19.3 THE TOOL
  • 19.4 EXAMPLE USAGE AND OUTPUT
  • 19.5 RENDERING ALGORITHM DEVELOPMENT AND EVALUATION
  • 19.6 APPENDIX: MEAN VERSUS WEIGHTED MEDIAN
  • ACKNOWLEDGMENTS.
  • REFERENCES
  • PART III SAMPLING
  • CHAPTER 20 MULTIPLE IMPORTANCE SAMPLING 101
  • ABSTRACT
  • 20.1 DIRECT LIGHT ESTIMATION
  • 20.1.1 COSINE HEMISPHERE SAMPLING
  • 20.1.2 MATERIAL SAMPLING
  • 20.1.3 LIGHT SAMPLING
  • 20.1.4 CHOOSING A TECHNIQUE
  • 20.1.5 MULTIPLE IMPORTANCE SAMPLING
  • 20.2 A PATH TRACER WITH MIS
  • 20.3 CLOSING WORDS AND FURTHER READING
  • ACKNOWLEDGMENTS
  • REFERENCES
  • CHAPTER 21 THE ALIAS METHOD FOR SAMPLING DISCRETE DISTRIBUTIONS
  • ABSTRACT
  • 21.1 INTRODUCTION
  • 21.2 BASIC INTUITION
  • 21.3 THE ALIAS METHOD
  • 21.4 ALIAS TABLE CONSTRUCTION
  • 21.5 ADDITIONAL READING AND RESOURCES
  • REFERENCES
  • CHAPTER 22 WEIGHTED RESERVOIR SAMPLING: RANDOMLY SAMPLING STREAMS
  • ABSTRACT
  • 22.1 INTRODUCTION
  • 22.2 USAGE IN COMPUTER GRAPHICS
  • 22.3 PROBLEM DESCRIPTION
  • 22.4 RESERVOIR SAMPLING WITH OR WITHOUT REPLACEMENT
  • 22.5 SIMPLE ALGORITHM FOR SAMPLING WITH REPLACEMENT
  • 22.6 WEIGHTED RESERVOIR SAMPLING FOR K &gt
  • 1
  • 22.7 AN INTERESTING PROPERTY
  • 22.8 ADDITIONAL READING
  • REFERENCES
  • CHAPTER 23 RENDERING MANY LIGHTS WITH GRID-BASED RESERVOIRS
  • ABSTRACT
  • 23.1 INTRODUCTION
  • 23.2 PROBLEM STATEMENT
  • 23.2.1 RESAMPLED IMPORTANCE SAMPLING
  • 23.2.2 RESERVOIR
  • 23.3 GRID-BASED RESERVOIRS
  • 23.3.1 SELECTING LIGHT SAMPLES FOR THE GRID
  • 23.3.2 SAMPLING THE LIGHT FOR SHADING
  • 23.4 IMPLEMENTATION
  • 23.4.1 CONSTRUCTION OF THE GRID
  • POSITIONING THE GRID
  • BUILDING CELL RESERVOIRS
  • TEMPORAL EUSE
  • DYNAMIC LIGHTS
  • 23.4.2 SAMPLING FROM THE GRID
  • 23.5 RESULTS
  • 23.6 CONCLUSIONS
  • REFERENCES
  • CHAPTER 24 USING BLUE NOISE FOR RAY TRACED SOFT SHADOWS
  • ABSTRACT
  • 24.1 INTRODUCTION
  • 24.2 OVERVIEW
  • 24.3 BLUE NOISE SAMPLES
  • 24.4 BLUE NOISE MASKS
  • 24.5 VOID AND CLUSTER ALGORITHM
  • 24.5.1 INITIAL BINARY PATTERN
  • 24.5.2 PHASE I: MAKE PATTERN PROGRESSIVE
  • 24.5.3 PHASE II: FIRST HALF OF PIXELS.
  • 24.5.4 PHASE III: SECOND HALF OF PIXELS.