The Heterogeneity of Cancer Metabolism.

Saved in:
Bibliographic Details
Superior document:Advances in Experimental Medicine and Biology Series ; v.1311
:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
©2021.
Year of Publication:2021
Edition:2nd ed.
Language:English
Series:Advances in Experimental Medicine and Biology Series
Online Access:
Physical Description:1 online resource (283 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006628607
ctrlnum (MiAaPQ)5006628607
(Au-PeEL)EBL6628607
(OCoLC)1252918887
collection bib_alma
record_format marc
spelling Le, Anne.
The Heterogeneity of Cancer Metabolism.
2nd ed.
Cham : Springer International Publishing AG, 2021.
©2021.
1 online resource (283 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Advances in Experimental Medicine and Biology Series ; v.1311
Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Editor and Contributors -- About the Editor -- Contributors -- Part I: Basic Metabolism of Cancer Cells -- Glucose Metabolism in Cancer: The Warburg Effect and Beyond -- 1 Introduction -- 2 The Warburg Effect -- 2.1 Otto Warburg's Early Studies of Normal Cellular Respiration -- 2.2 The Warburg Effect Is a Prominent Feature of Cancer Cell Metabolism -- 2.3 The Biochemical Nature and Clinical Significance of the Warburg Effect -- 2.4 Metabolic and Genetic Reprogramming Underlying the Warburg Effect -- 3 Heterogeneity in Glucose Metabolism -- 4 The Role of Glycogen Metabolism and Gluconeogenesis in Tumor Growth -- 4.1 Glycogen Metabolism Is Upregulated in Several Cancers -- 4.2 Upregulation of Gluconeogenic Enzymes in Cancer -- 5 Success and Failures of Targeting Glucose Metabolism for Cancer Therapy -- 5.1 Therapies Targeting Glycolysis and the Warburg Effect -- 5.2 Therapies Targeting Glycogenolysis and Glycogen Synthesis Have Shown Promising Results -- 6 Conclusion -- References -- Glutamine Metabolism in Cancer -- 1 Introduction -- 2 Characteristic Features of Glutamine Metabolism in Cancer -- 2.1 Dysregulation of the TCA Cycle -- 2.2 Glutamine Addiction -- 2.3 The Metabolic Reprogramming of Cancers Provides Them with Alternative Sources of Glutamate: Via N-Acetyl-Aspartyl-Glutamate (NAAG) and via the Glutaminase II Pathway -- 3 Targeting Glutamine Metabolism for Cancer Therapy -- 3.1 Inhibition of Glutaminolysis by GLS Inhibitors -- 3.2 Combination Therapy -- 3.3 Knockdown of c-MYC -- 3.4 Inhibition of Glutamate Dehydrogenase (GDH) -- 3.5 Inhibiting the TCA Cycle by Depleting Glutamine, α-Ketoglutarate, and Asparagine -- 3.6 Inhibiting Glutamine Uptake -- 3.7 Using Glutamine Mimetics.
4 Transaminase Upregulation and Targeting Amino Acid Synthesis for Cancer Therapy -- 5 Glutamine Metabolism in the Tumor Microenvironment -- 5.1 The Role of Glutamine Metabolism in T Cells and NK Cells -- 5.2 The Role of Glutamine Metabolism in Tumor-Associated Macrophages -- 5.3 The Role of Glutamine Metabolism in Cancer-Associated Fibroblasts -- 6 Conclusion -- References -- The Heterogeneity of Lipid Metabolism in Cancer -- 1 Introduction -- 2 Fatty Acid Synthesis Is Upregulated in Cancer -- 2.1 The Mitochondrial Citrate Transporter Protein (CTP) Protects Mitochondrial Function in Cancer -- 2.2 ATP Citrate Lyase (ACLY) Is Upregulated in Cancer -- 2.3 Multifaceted Effects of Inhibiting Acetyl-CoA Carboxylase (ACC) in Cancer -- 2.4 The First Fatty Acid Synthase (FAS) Inhibitor TVB-2640 Is in Clinical Trials for Cancer -- 2.5 Which Markers Can Predict Cancer Cell Sensitivity to Lipid Synthesis Inhibition? -- 2.6 Tumor Microenvironment Influences the Sensitivity of Cancer Cells to Lipid Synthesis Inhibitors -- 3 Targeting Fatty Acid Elongation -- 4 The Efficacy of Inhibiting Cholesterol Synthesis with Adjuvant Statins Is Variable -- 5 Fatty Acid Uptake Is Associated with Metastasis -- 6 Fatty Acid Oxidation Encompasses a Diverse Set of Molecular Mechanisms -- 6.1 Targeting FAO for Cancer Therapy May Be Achieved by Inhibiting Carnitine Palmitoyltransferase 1 -- 6.2 CPT1 Inhibitors Are Now in Clinical Trials -- 6.3 FAO for Very-Long-Chain Fatty Acids Occurs at the Peroxisome Where Peroxisome Proliferator-Activated Receptors (PPARs) Act as Ligand-Activated Transcription Factors -- 7 Conclusion -- References -- Part II: Heterogeneity of Cancer Metabolism -- The Multifaceted Glioblastoma: From Genomic Alterations to Metabolic Adaptations -- 1 Introduction -- 2 GBM Classifications and Intratumoral Heterogeneity.
2.1 GBM Subtype Classification -- 2.2 Intratumoral Heterogeneity -- 2.2.1 Liquid Biopsy as a Method for Detecting Heterogeneity and Longitudinal Tracking -- 2.2.2 Glioblastoma Stem Cell Resistance and Recurrence Are Supported Through Mitochondrial Activity and Fatty Acid Oxidation -- 3 Genomic Alterations Lead to Distinct Metabolic Changes Allowing for Targeted Therapies -- 3.1 PTEN Mutations Lead to High Rates of Glycolysis, Facilitating Survival in Harsh Microenvironments -- 3.2 EGFR Mutations Shift Cancer Cells toward a Glycolytic Phenotype and Permit Survival under Glucose-Deprived Conditions -- 3.3 p53 Mutations Result in Activation of the Warburg Effect -- 3.4 GBM Exhibits Upregulated Glutamine Metabolism Allowing for Targeted Vulnerabilities Through GLS, GS, and mTOR -- 3.5 Lipid Metabolism Dysregulation Following BRAF Mutations and EGFR Signaling Provides Clues for New GBM Therapeutic Strategies -- 3.6 GBMs Rely on the TCA Cycle and Its Reductants -- 3.7 IDH1 Mutations Lead to Oncometabolite Production and Glutamine Addiction and Act as a Prognostic Marker -- 4 Benefits of Combined Therapy -- 5 Advanced Brain Tumors (GBM) Display Distinct Metabolic Profiles Compared to Lower Grade Tumors -- 6 Conclusion -- References -- The Intricate Metabolism of Pancreatic Cancers -- 1 Introduction -- 2 Oncogenic KRAS Regulates Metabolism in Pancreatic Cancer Cells (Fig. 2) -- 2.1 Oncogenic KRAS Regulates Glutamine Metabolism -- 2.2 Oncogenic KRAS Regulates Glucose Metabolism -- 2.3 Oncogenic KRAS Upregulates Macropinocytosis and Lipid Scavenging -- 3 Other Alternative Metabolisms in Pancreatic Cancer -- 3.1 MUC1 Overexpression Leads to Increased Glucose Metabolism -- 3.2 p53 Functions Predict the Sensitivity of Pancreatic Cancer Tumors to Glycolytic Inhibition -- 3.3 Alternative Source of Glutamate in PDAC.
3.3.1 Neurotransmitter N-Acetyl-Aspartyl-Glutamate (NAAG) as a Glutamate Reservoir in Cancer -- 3.3.2 Glutaminase II Pathway Is Another Source of Glutamate in Cancer -- 4 Pancreatic Tumor Microenvironment -- 4.1 PDACs are Dependent on Autophagy -- 4.2 Stromal Interactions Create Complex PDAC Metabolic Networks -- 5 Suggested Therapy (Fig. 3) -- 5.1 Targeting Alpha-Ketoglutarate Dehydrogenase Complex Function by CPI-613 to Slow Mitochondrial Metabolism -- 5.2 Antidiabetic Drug, Metformin, Targets Pancreatic Cancer Stem Cells -- 5.3 Combined Therapy to Target Pancreatic Metabolism Heterogeneity -- 5.4 Targeting PDACs Based on Metabolic Subtype within the PDAC Tumor Microenvironment -- 5.5 Autophagy Inhibition via Hydroxychloroquine -- 6 Conclusion -- References -- The Heterogeneity of Breast Cancer Metabolism -- 1 Introduction -- 2 Aberrant Metabolic Pathways Present in Breast Cancer Contribute to Breast Cancer Heterogeneity (Fig. 1) -- 2.1 Differences in Glycolytic Upregulation Among Breast Cancer Subtypes Can Be Attributed to Glucose Transporter (GLUT) Expression -- 2.2 Choline Metabolism in Breast Cancer Is Strongly Associated with Tumor Grades -- 3 Different Roles of Estrogen in Estrogen Metabolism and ER Binding Promote Breast Cancer Tumorigenicity -- 3.1 PHGDH Overexpression in Serine Biosynthesis Fuels TCA Anaplerosis -- 4 The Clinical Applications of Metabolic Profiling -- 4.1 Breast Cancer Diagnosis and Subtyping Using Metabolomics -- 4.2 Metabolic Profiling as a Strategy for Prediction of Recurrence in Breast Cancer -- 4.3 Metabolic Fingerprinting in Breast Cancer Metastasis -- 4.4 Prediction of Response to Therapy Based on Metabolic Phenotypes -- 5 Additional Perspectives on Breast Cancer Heterogeneity -- 5.1 Spatial Pathogenesis Observed in Breast Cancer Metabolism.
5.2 Temporal Pathogenesis Observed in Breast Cancer Metabolism: Metabolic Differences Between Early Stage and Advanced Stage -- 5.3 Metabolic Heterogeneity Influences Effective Breast Cancer Drug Treatment -- 6 Conclusion -- References -- Non-Hodgkin Lymphoma Metabolism -- 1 Introduction -- 2 Lymphoma Metabolism Exhibits Multifaceted Characteristic Features Which Are Correlated to Poor Prognosis -- 2.1 Aggressive Lymphomas Exhibit the Warburg Effect -- 2.2 Lactic Acidosis Is a Result of Overproduction of Lactate and Leads to a Fatal Prognosis -- 3 Genetic Alterations Lead to Different Metabolic Phenotypes in NHL (Fig. 2) -- 3.1 Mutation of p53 Helps Cancer Cells Survive Glutamine Deprivation -- 3.2 PI3K Regulates Fatty Acid Synthesis (FAS) in Primary Effusion Lymphoma (PEL) and Other B-NHLs -- 3.3 AMPK Regulates NADPH Balance for Fatty Acid Oxidation (FAO) as a Means of Supplementing the Tricarboxylic Acid (TCA) Cycle -- 3.4 PRPS2 Couples Protein and Nucleotide Biosynthesis to Drive Lymphomagenesis -- 3.5 mTOR Activation Promotes Fatty Acid Synthesis (FAS) -- 3.6 MYC Regulates Cancer Cell Metabolism under Glucose-Deprived and Hypoxic Conditions -- 3.7 HIF-1 Acts as a Regulator in Hypoxia Adaptation and the Related Metabolic Changes -- 3.8 Understanding the PI3K/AKT/mTOR Pathway in Lymphoma Can Lead to a Variety of Treatments -- 4 Metabolic Profiling for Monitoring Tumor Progression and Guiding Treatment -- 4.1 [18F]FDG PET/CT -- 4.2 Systemic NAAG Concentrations for Tumor Growth Monitoring -- 5 Conclusion -- References -- The Heterogeneity Metabolism of Renal Cell Carcinomas -- 1 Introduction -- 2 Different Oncogenic Mutations Lead to Different Metabolic Phenotypes in RCC (Fig. 1) -- 2.1 Loss of the von Hippel-Lindau Tumor-Suppressor Gene Results in Metabolic Alterations Including Shifts Toward Aerobic Glycolysis in RCC.
2.2 Fumarate Hydratase Mutations Result in an Increase in Aerobic Glycolysis in RCC.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Print version: Le, Anne The Heterogeneity of Cancer Metabolism Cham : Springer International Publishing AG,c2021 9783030657673
ProQuest (Firm)
Advances in Experimental Medicine and Biology Series
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6628607 Click to View
language English
format eBook
author Le, Anne.
spellingShingle Le, Anne.
The Heterogeneity of Cancer Metabolism.
Advances in Experimental Medicine and Biology Series ;
Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Editor and Contributors -- About the Editor -- Contributors -- Part I: Basic Metabolism of Cancer Cells -- Glucose Metabolism in Cancer: The Warburg Effect and Beyond -- 1 Introduction -- 2 The Warburg Effect -- 2.1 Otto Warburg's Early Studies of Normal Cellular Respiration -- 2.2 The Warburg Effect Is a Prominent Feature of Cancer Cell Metabolism -- 2.3 The Biochemical Nature and Clinical Significance of the Warburg Effect -- 2.4 Metabolic and Genetic Reprogramming Underlying the Warburg Effect -- 3 Heterogeneity in Glucose Metabolism -- 4 The Role of Glycogen Metabolism and Gluconeogenesis in Tumor Growth -- 4.1 Glycogen Metabolism Is Upregulated in Several Cancers -- 4.2 Upregulation of Gluconeogenic Enzymes in Cancer -- 5 Success and Failures of Targeting Glucose Metabolism for Cancer Therapy -- 5.1 Therapies Targeting Glycolysis and the Warburg Effect -- 5.2 Therapies Targeting Glycogenolysis and Glycogen Synthesis Have Shown Promising Results -- 6 Conclusion -- References -- Glutamine Metabolism in Cancer -- 1 Introduction -- 2 Characteristic Features of Glutamine Metabolism in Cancer -- 2.1 Dysregulation of the TCA Cycle -- 2.2 Glutamine Addiction -- 2.3 The Metabolic Reprogramming of Cancers Provides Them with Alternative Sources of Glutamate: Via N-Acetyl-Aspartyl-Glutamate (NAAG) and via the Glutaminase II Pathway -- 3 Targeting Glutamine Metabolism for Cancer Therapy -- 3.1 Inhibition of Glutaminolysis by GLS Inhibitors -- 3.2 Combination Therapy -- 3.3 Knockdown of c-MYC -- 3.4 Inhibition of Glutamate Dehydrogenase (GDH) -- 3.5 Inhibiting the TCA Cycle by Depleting Glutamine, α-Ketoglutarate, and Asparagine -- 3.6 Inhibiting Glutamine Uptake -- 3.7 Using Glutamine Mimetics.
4 Transaminase Upregulation and Targeting Amino Acid Synthesis for Cancer Therapy -- 5 Glutamine Metabolism in the Tumor Microenvironment -- 5.1 The Role of Glutamine Metabolism in T Cells and NK Cells -- 5.2 The Role of Glutamine Metabolism in Tumor-Associated Macrophages -- 5.3 The Role of Glutamine Metabolism in Cancer-Associated Fibroblasts -- 6 Conclusion -- References -- The Heterogeneity of Lipid Metabolism in Cancer -- 1 Introduction -- 2 Fatty Acid Synthesis Is Upregulated in Cancer -- 2.1 The Mitochondrial Citrate Transporter Protein (CTP) Protects Mitochondrial Function in Cancer -- 2.2 ATP Citrate Lyase (ACLY) Is Upregulated in Cancer -- 2.3 Multifaceted Effects of Inhibiting Acetyl-CoA Carboxylase (ACC) in Cancer -- 2.4 The First Fatty Acid Synthase (FAS) Inhibitor TVB-2640 Is in Clinical Trials for Cancer -- 2.5 Which Markers Can Predict Cancer Cell Sensitivity to Lipid Synthesis Inhibition? -- 2.6 Tumor Microenvironment Influences the Sensitivity of Cancer Cells to Lipid Synthesis Inhibitors -- 3 Targeting Fatty Acid Elongation -- 4 The Efficacy of Inhibiting Cholesterol Synthesis with Adjuvant Statins Is Variable -- 5 Fatty Acid Uptake Is Associated with Metastasis -- 6 Fatty Acid Oxidation Encompasses a Diverse Set of Molecular Mechanisms -- 6.1 Targeting FAO for Cancer Therapy May Be Achieved by Inhibiting Carnitine Palmitoyltransferase 1 -- 6.2 CPT1 Inhibitors Are Now in Clinical Trials -- 6.3 FAO for Very-Long-Chain Fatty Acids Occurs at the Peroxisome Where Peroxisome Proliferator-Activated Receptors (PPARs) Act as Ligand-Activated Transcription Factors -- 7 Conclusion -- References -- Part II: Heterogeneity of Cancer Metabolism -- The Multifaceted Glioblastoma: From Genomic Alterations to Metabolic Adaptations -- 1 Introduction -- 2 GBM Classifications and Intratumoral Heterogeneity.
2.1 GBM Subtype Classification -- 2.2 Intratumoral Heterogeneity -- 2.2.1 Liquid Biopsy as a Method for Detecting Heterogeneity and Longitudinal Tracking -- 2.2.2 Glioblastoma Stem Cell Resistance and Recurrence Are Supported Through Mitochondrial Activity and Fatty Acid Oxidation -- 3 Genomic Alterations Lead to Distinct Metabolic Changes Allowing for Targeted Therapies -- 3.1 PTEN Mutations Lead to High Rates of Glycolysis, Facilitating Survival in Harsh Microenvironments -- 3.2 EGFR Mutations Shift Cancer Cells toward a Glycolytic Phenotype and Permit Survival under Glucose-Deprived Conditions -- 3.3 p53 Mutations Result in Activation of the Warburg Effect -- 3.4 GBM Exhibits Upregulated Glutamine Metabolism Allowing for Targeted Vulnerabilities Through GLS, GS, and mTOR -- 3.5 Lipid Metabolism Dysregulation Following BRAF Mutations and EGFR Signaling Provides Clues for New GBM Therapeutic Strategies -- 3.6 GBMs Rely on the TCA Cycle and Its Reductants -- 3.7 IDH1 Mutations Lead to Oncometabolite Production and Glutamine Addiction and Act as a Prognostic Marker -- 4 Benefits of Combined Therapy -- 5 Advanced Brain Tumors (GBM) Display Distinct Metabolic Profiles Compared to Lower Grade Tumors -- 6 Conclusion -- References -- The Intricate Metabolism of Pancreatic Cancers -- 1 Introduction -- 2 Oncogenic KRAS Regulates Metabolism in Pancreatic Cancer Cells (Fig. 2) -- 2.1 Oncogenic KRAS Regulates Glutamine Metabolism -- 2.2 Oncogenic KRAS Regulates Glucose Metabolism -- 2.3 Oncogenic KRAS Upregulates Macropinocytosis and Lipid Scavenging -- 3 Other Alternative Metabolisms in Pancreatic Cancer -- 3.1 MUC1 Overexpression Leads to Increased Glucose Metabolism -- 3.2 p53 Functions Predict the Sensitivity of Pancreatic Cancer Tumors to Glycolytic Inhibition -- 3.3 Alternative Source of Glutamate in PDAC.
3.3.1 Neurotransmitter N-Acetyl-Aspartyl-Glutamate (NAAG) as a Glutamate Reservoir in Cancer -- 3.3.2 Glutaminase II Pathway Is Another Source of Glutamate in Cancer -- 4 Pancreatic Tumor Microenvironment -- 4.1 PDACs are Dependent on Autophagy -- 4.2 Stromal Interactions Create Complex PDAC Metabolic Networks -- 5 Suggested Therapy (Fig. 3) -- 5.1 Targeting Alpha-Ketoglutarate Dehydrogenase Complex Function by CPI-613 to Slow Mitochondrial Metabolism -- 5.2 Antidiabetic Drug, Metformin, Targets Pancreatic Cancer Stem Cells -- 5.3 Combined Therapy to Target Pancreatic Metabolism Heterogeneity -- 5.4 Targeting PDACs Based on Metabolic Subtype within the PDAC Tumor Microenvironment -- 5.5 Autophagy Inhibition via Hydroxychloroquine -- 6 Conclusion -- References -- The Heterogeneity of Breast Cancer Metabolism -- 1 Introduction -- 2 Aberrant Metabolic Pathways Present in Breast Cancer Contribute to Breast Cancer Heterogeneity (Fig. 1) -- 2.1 Differences in Glycolytic Upregulation Among Breast Cancer Subtypes Can Be Attributed to Glucose Transporter (GLUT) Expression -- 2.2 Choline Metabolism in Breast Cancer Is Strongly Associated with Tumor Grades -- 3 Different Roles of Estrogen in Estrogen Metabolism and ER Binding Promote Breast Cancer Tumorigenicity -- 3.1 PHGDH Overexpression in Serine Biosynthesis Fuels TCA Anaplerosis -- 4 The Clinical Applications of Metabolic Profiling -- 4.1 Breast Cancer Diagnosis and Subtyping Using Metabolomics -- 4.2 Metabolic Profiling as a Strategy for Prediction of Recurrence in Breast Cancer -- 4.3 Metabolic Fingerprinting in Breast Cancer Metastasis -- 4.4 Prediction of Response to Therapy Based on Metabolic Phenotypes -- 5 Additional Perspectives on Breast Cancer Heterogeneity -- 5.1 Spatial Pathogenesis Observed in Breast Cancer Metabolism.
5.2 Temporal Pathogenesis Observed in Breast Cancer Metabolism: Metabolic Differences Between Early Stage and Advanced Stage -- 5.3 Metabolic Heterogeneity Influences Effective Breast Cancer Drug Treatment -- 6 Conclusion -- References -- Non-Hodgkin Lymphoma Metabolism -- 1 Introduction -- 2 Lymphoma Metabolism Exhibits Multifaceted Characteristic Features Which Are Correlated to Poor Prognosis -- 2.1 Aggressive Lymphomas Exhibit the Warburg Effect -- 2.2 Lactic Acidosis Is a Result of Overproduction of Lactate and Leads to a Fatal Prognosis -- 3 Genetic Alterations Lead to Different Metabolic Phenotypes in NHL (Fig. 2) -- 3.1 Mutation of p53 Helps Cancer Cells Survive Glutamine Deprivation -- 3.2 PI3K Regulates Fatty Acid Synthesis (FAS) in Primary Effusion Lymphoma (PEL) and Other B-NHLs -- 3.3 AMPK Regulates NADPH Balance for Fatty Acid Oxidation (FAO) as a Means of Supplementing the Tricarboxylic Acid (TCA) Cycle -- 3.4 PRPS2 Couples Protein and Nucleotide Biosynthesis to Drive Lymphomagenesis -- 3.5 mTOR Activation Promotes Fatty Acid Synthesis (FAS) -- 3.6 MYC Regulates Cancer Cell Metabolism under Glucose-Deprived and Hypoxic Conditions -- 3.7 HIF-1 Acts as a Regulator in Hypoxia Adaptation and the Related Metabolic Changes -- 3.8 Understanding the PI3K/AKT/mTOR Pathway in Lymphoma Can Lead to a Variety of Treatments -- 4 Metabolic Profiling for Monitoring Tumor Progression and Guiding Treatment -- 4.1 [18F]FDG PET/CT -- 4.2 Systemic NAAG Concentrations for Tumor Growth Monitoring -- 5 Conclusion -- References -- The Heterogeneity Metabolism of Renal Cell Carcinomas -- 1 Introduction -- 2 Different Oncogenic Mutations Lead to Different Metabolic Phenotypes in RCC (Fig. 1) -- 2.1 Loss of the von Hippel-Lindau Tumor-Suppressor Gene Results in Metabolic Alterations Including Shifts Toward Aerobic Glycolysis in RCC.
2.2 Fumarate Hydratase Mutations Result in an Increase in Aerobic Glycolysis in RCC.
author_facet Le, Anne.
author_variant a l al
author_sort Le, Anne.
title The Heterogeneity of Cancer Metabolism.
title_full The Heterogeneity of Cancer Metabolism.
title_fullStr The Heterogeneity of Cancer Metabolism.
title_full_unstemmed The Heterogeneity of Cancer Metabolism.
title_auth The Heterogeneity of Cancer Metabolism.
title_new The Heterogeneity of Cancer Metabolism.
title_sort the heterogeneity of cancer metabolism.
series Advances in Experimental Medicine and Biology Series ;
series2 Advances in Experimental Medicine and Biology Series ;
publisher Springer International Publishing AG,
publishDate 2021
physical 1 online resource (283 pages)
edition 2nd ed.
contents Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Editor and Contributors -- About the Editor -- Contributors -- Part I: Basic Metabolism of Cancer Cells -- Glucose Metabolism in Cancer: The Warburg Effect and Beyond -- 1 Introduction -- 2 The Warburg Effect -- 2.1 Otto Warburg's Early Studies of Normal Cellular Respiration -- 2.2 The Warburg Effect Is a Prominent Feature of Cancer Cell Metabolism -- 2.3 The Biochemical Nature and Clinical Significance of the Warburg Effect -- 2.4 Metabolic and Genetic Reprogramming Underlying the Warburg Effect -- 3 Heterogeneity in Glucose Metabolism -- 4 The Role of Glycogen Metabolism and Gluconeogenesis in Tumor Growth -- 4.1 Glycogen Metabolism Is Upregulated in Several Cancers -- 4.2 Upregulation of Gluconeogenic Enzymes in Cancer -- 5 Success and Failures of Targeting Glucose Metabolism for Cancer Therapy -- 5.1 Therapies Targeting Glycolysis and the Warburg Effect -- 5.2 Therapies Targeting Glycogenolysis and Glycogen Synthesis Have Shown Promising Results -- 6 Conclusion -- References -- Glutamine Metabolism in Cancer -- 1 Introduction -- 2 Characteristic Features of Glutamine Metabolism in Cancer -- 2.1 Dysregulation of the TCA Cycle -- 2.2 Glutamine Addiction -- 2.3 The Metabolic Reprogramming of Cancers Provides Them with Alternative Sources of Glutamate: Via N-Acetyl-Aspartyl-Glutamate (NAAG) and via the Glutaminase II Pathway -- 3 Targeting Glutamine Metabolism for Cancer Therapy -- 3.1 Inhibition of Glutaminolysis by GLS Inhibitors -- 3.2 Combination Therapy -- 3.3 Knockdown of c-MYC -- 3.4 Inhibition of Glutamate Dehydrogenase (GDH) -- 3.5 Inhibiting the TCA Cycle by Depleting Glutamine, α-Ketoglutarate, and Asparagine -- 3.6 Inhibiting Glutamine Uptake -- 3.7 Using Glutamine Mimetics.
4 Transaminase Upregulation and Targeting Amino Acid Synthesis for Cancer Therapy -- 5 Glutamine Metabolism in the Tumor Microenvironment -- 5.1 The Role of Glutamine Metabolism in T Cells and NK Cells -- 5.2 The Role of Glutamine Metabolism in Tumor-Associated Macrophages -- 5.3 The Role of Glutamine Metabolism in Cancer-Associated Fibroblasts -- 6 Conclusion -- References -- The Heterogeneity of Lipid Metabolism in Cancer -- 1 Introduction -- 2 Fatty Acid Synthesis Is Upregulated in Cancer -- 2.1 The Mitochondrial Citrate Transporter Protein (CTP) Protects Mitochondrial Function in Cancer -- 2.2 ATP Citrate Lyase (ACLY) Is Upregulated in Cancer -- 2.3 Multifaceted Effects of Inhibiting Acetyl-CoA Carboxylase (ACC) in Cancer -- 2.4 The First Fatty Acid Synthase (FAS) Inhibitor TVB-2640 Is in Clinical Trials for Cancer -- 2.5 Which Markers Can Predict Cancer Cell Sensitivity to Lipid Synthesis Inhibition? -- 2.6 Tumor Microenvironment Influences the Sensitivity of Cancer Cells to Lipid Synthesis Inhibitors -- 3 Targeting Fatty Acid Elongation -- 4 The Efficacy of Inhibiting Cholesterol Synthesis with Adjuvant Statins Is Variable -- 5 Fatty Acid Uptake Is Associated with Metastasis -- 6 Fatty Acid Oxidation Encompasses a Diverse Set of Molecular Mechanisms -- 6.1 Targeting FAO for Cancer Therapy May Be Achieved by Inhibiting Carnitine Palmitoyltransferase 1 -- 6.2 CPT1 Inhibitors Are Now in Clinical Trials -- 6.3 FAO for Very-Long-Chain Fatty Acids Occurs at the Peroxisome Where Peroxisome Proliferator-Activated Receptors (PPARs) Act as Ligand-Activated Transcription Factors -- 7 Conclusion -- References -- Part II: Heterogeneity of Cancer Metabolism -- The Multifaceted Glioblastoma: From Genomic Alterations to Metabolic Adaptations -- 1 Introduction -- 2 GBM Classifications and Intratumoral Heterogeneity.
2.1 GBM Subtype Classification -- 2.2 Intratumoral Heterogeneity -- 2.2.1 Liquid Biopsy as a Method for Detecting Heterogeneity and Longitudinal Tracking -- 2.2.2 Glioblastoma Stem Cell Resistance and Recurrence Are Supported Through Mitochondrial Activity and Fatty Acid Oxidation -- 3 Genomic Alterations Lead to Distinct Metabolic Changes Allowing for Targeted Therapies -- 3.1 PTEN Mutations Lead to High Rates of Glycolysis, Facilitating Survival in Harsh Microenvironments -- 3.2 EGFR Mutations Shift Cancer Cells toward a Glycolytic Phenotype and Permit Survival under Glucose-Deprived Conditions -- 3.3 p53 Mutations Result in Activation of the Warburg Effect -- 3.4 GBM Exhibits Upregulated Glutamine Metabolism Allowing for Targeted Vulnerabilities Through GLS, GS, and mTOR -- 3.5 Lipid Metabolism Dysregulation Following BRAF Mutations and EGFR Signaling Provides Clues for New GBM Therapeutic Strategies -- 3.6 GBMs Rely on the TCA Cycle and Its Reductants -- 3.7 IDH1 Mutations Lead to Oncometabolite Production and Glutamine Addiction and Act as a Prognostic Marker -- 4 Benefits of Combined Therapy -- 5 Advanced Brain Tumors (GBM) Display Distinct Metabolic Profiles Compared to Lower Grade Tumors -- 6 Conclusion -- References -- The Intricate Metabolism of Pancreatic Cancers -- 1 Introduction -- 2 Oncogenic KRAS Regulates Metabolism in Pancreatic Cancer Cells (Fig. 2) -- 2.1 Oncogenic KRAS Regulates Glutamine Metabolism -- 2.2 Oncogenic KRAS Regulates Glucose Metabolism -- 2.3 Oncogenic KRAS Upregulates Macropinocytosis and Lipid Scavenging -- 3 Other Alternative Metabolisms in Pancreatic Cancer -- 3.1 MUC1 Overexpression Leads to Increased Glucose Metabolism -- 3.2 p53 Functions Predict the Sensitivity of Pancreatic Cancer Tumors to Glycolytic Inhibition -- 3.3 Alternative Source of Glutamate in PDAC.
3.3.1 Neurotransmitter N-Acetyl-Aspartyl-Glutamate (NAAG) as a Glutamate Reservoir in Cancer -- 3.3.2 Glutaminase II Pathway Is Another Source of Glutamate in Cancer -- 4 Pancreatic Tumor Microenvironment -- 4.1 PDACs are Dependent on Autophagy -- 4.2 Stromal Interactions Create Complex PDAC Metabolic Networks -- 5 Suggested Therapy (Fig. 3) -- 5.1 Targeting Alpha-Ketoglutarate Dehydrogenase Complex Function by CPI-613 to Slow Mitochondrial Metabolism -- 5.2 Antidiabetic Drug, Metformin, Targets Pancreatic Cancer Stem Cells -- 5.3 Combined Therapy to Target Pancreatic Metabolism Heterogeneity -- 5.4 Targeting PDACs Based on Metabolic Subtype within the PDAC Tumor Microenvironment -- 5.5 Autophagy Inhibition via Hydroxychloroquine -- 6 Conclusion -- References -- The Heterogeneity of Breast Cancer Metabolism -- 1 Introduction -- 2 Aberrant Metabolic Pathways Present in Breast Cancer Contribute to Breast Cancer Heterogeneity (Fig. 1) -- 2.1 Differences in Glycolytic Upregulation Among Breast Cancer Subtypes Can Be Attributed to Glucose Transporter (GLUT) Expression -- 2.2 Choline Metabolism in Breast Cancer Is Strongly Associated with Tumor Grades -- 3 Different Roles of Estrogen in Estrogen Metabolism and ER Binding Promote Breast Cancer Tumorigenicity -- 3.1 PHGDH Overexpression in Serine Biosynthesis Fuels TCA Anaplerosis -- 4 The Clinical Applications of Metabolic Profiling -- 4.1 Breast Cancer Diagnosis and Subtyping Using Metabolomics -- 4.2 Metabolic Profiling as a Strategy for Prediction of Recurrence in Breast Cancer -- 4.3 Metabolic Fingerprinting in Breast Cancer Metastasis -- 4.4 Prediction of Response to Therapy Based on Metabolic Phenotypes -- 5 Additional Perspectives on Breast Cancer Heterogeneity -- 5.1 Spatial Pathogenesis Observed in Breast Cancer Metabolism.
5.2 Temporal Pathogenesis Observed in Breast Cancer Metabolism: Metabolic Differences Between Early Stage and Advanced Stage -- 5.3 Metabolic Heterogeneity Influences Effective Breast Cancer Drug Treatment -- 6 Conclusion -- References -- Non-Hodgkin Lymphoma Metabolism -- 1 Introduction -- 2 Lymphoma Metabolism Exhibits Multifaceted Characteristic Features Which Are Correlated to Poor Prognosis -- 2.1 Aggressive Lymphomas Exhibit the Warburg Effect -- 2.2 Lactic Acidosis Is a Result of Overproduction of Lactate and Leads to a Fatal Prognosis -- 3 Genetic Alterations Lead to Different Metabolic Phenotypes in NHL (Fig. 2) -- 3.1 Mutation of p53 Helps Cancer Cells Survive Glutamine Deprivation -- 3.2 PI3K Regulates Fatty Acid Synthesis (FAS) in Primary Effusion Lymphoma (PEL) and Other B-NHLs -- 3.3 AMPK Regulates NADPH Balance for Fatty Acid Oxidation (FAO) as a Means of Supplementing the Tricarboxylic Acid (TCA) Cycle -- 3.4 PRPS2 Couples Protein and Nucleotide Biosynthesis to Drive Lymphomagenesis -- 3.5 mTOR Activation Promotes Fatty Acid Synthesis (FAS) -- 3.6 MYC Regulates Cancer Cell Metabolism under Glucose-Deprived and Hypoxic Conditions -- 3.7 HIF-1 Acts as a Regulator in Hypoxia Adaptation and the Related Metabolic Changes -- 3.8 Understanding the PI3K/AKT/mTOR Pathway in Lymphoma Can Lead to a Variety of Treatments -- 4 Metabolic Profiling for Monitoring Tumor Progression and Guiding Treatment -- 4.1 [18F]FDG PET/CT -- 4.2 Systemic NAAG Concentrations for Tumor Growth Monitoring -- 5 Conclusion -- References -- The Heterogeneity Metabolism of Renal Cell Carcinomas -- 1 Introduction -- 2 Different Oncogenic Mutations Lead to Different Metabolic Phenotypes in RCC (Fig. 1) -- 2.1 Loss of the von Hippel-Lindau Tumor-Suppressor Gene Results in Metabolic Alterations Including Shifts Toward Aerobic Glycolysis in RCC.
2.2 Fumarate Hydratase Mutations Result in an Increase in Aerobic Glycolysis in RCC.
isbn 9783030657680
9783030657673
callnumber-first R - Medicine
callnumber-subject RC - Internal Medicine
callnumber-label RC261-271
callnumber-sort RC 3261 3271
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6628607
illustrated Not Illustrated
oclc_num 1252918887
work_keys_str_mv AT leanne theheterogeneityofcancermetabolism
AT leanne heterogeneityofcancermetabolism
status_str n
ids_txt_mv (MiAaPQ)5006628607
(Au-PeEL)EBL6628607
(OCoLC)1252918887
carrierType_str_mv cr
hierarchy_parent_title Advances in Experimental Medicine and Biology Series ; v.1311
is_hierarchy_title The Heterogeneity of Cancer Metabolism.
container_title Advances in Experimental Medicine and Biology Series ; v.1311
_version_ 1792331058491949056
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12015nam a22004573i 4500</leader><controlfield tag="001">5006628607</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073841.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2021 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030657680</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030657673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006628607</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6628607</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1252918887</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">RC261-271</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Le, Anne.</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Heterogeneity of Cancer Metabolism.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (283 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advances in Experimental Medicine and Biology Series ;</subfield><subfield code="v">v.1311</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Editor and Contributors -- About the Editor -- Contributors -- Part I: Basic Metabolism of Cancer Cells -- Glucose Metabolism in Cancer: The Warburg Effect and Beyond -- 1 Introduction -- 2 The Warburg Effect -- 2.1 Otto Warburg's Early Studies of Normal Cellular Respiration -- 2.2 The Warburg Effect Is a Prominent Feature of Cancer Cell Metabolism -- 2.3 The Biochemical Nature and Clinical Significance of the Warburg Effect -- 2.4 Metabolic and Genetic Reprogramming Underlying the Warburg Effect -- 3 Heterogeneity in Glucose Metabolism -- 4 The Role of Glycogen Metabolism and Gluconeogenesis in Tumor Growth -- 4.1 Glycogen Metabolism Is Upregulated in Several Cancers -- 4.2 Upregulation of Gluconeogenic Enzymes in Cancer -- 5 Success and Failures of Targeting Glucose Metabolism for Cancer Therapy -- 5.1 Therapies Targeting Glycolysis and the Warburg Effect -- 5.2 Therapies Targeting Glycogenolysis and Glycogen Synthesis Have Shown Promising Results -- 6 Conclusion -- References -- Glutamine Metabolism in Cancer -- 1 Introduction -- 2 Characteristic Features of Glutamine Metabolism in Cancer -- 2.1 Dysregulation of the TCA Cycle -- 2.2 Glutamine Addiction -- 2.3 The Metabolic Reprogramming of Cancers Provides Them with Alternative Sources of Glutamate: Via N-Acetyl-Aspartyl-Glutamate (NAAG) and via the Glutaminase II Pathway -- 3 Targeting Glutamine Metabolism for Cancer Therapy -- 3.1 Inhibition of Glutaminolysis by GLS Inhibitors -- 3.2 Combination Therapy -- 3.3 Knockdown of c-MYC -- 3.4 Inhibition of Glutamate Dehydrogenase (GDH) -- 3.5 Inhibiting the TCA Cycle by Depleting Glutamine, α-Ketoglutarate, and Asparagine -- 3.6 Inhibiting Glutamine Uptake -- 3.7 Using Glutamine Mimetics.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4 Transaminase Upregulation and Targeting Amino Acid Synthesis for Cancer Therapy -- 5 Glutamine Metabolism in the Tumor Microenvironment -- 5.1 The Role of Glutamine Metabolism in T Cells and NK Cells -- 5.2 The Role of Glutamine Metabolism in Tumor-Associated Macrophages -- 5.3 The Role of Glutamine Metabolism in Cancer-Associated Fibroblasts -- 6 Conclusion -- References -- The Heterogeneity of Lipid Metabolism in Cancer -- 1 Introduction -- 2 Fatty Acid Synthesis Is Upregulated in Cancer -- 2.1 The Mitochondrial Citrate Transporter Protein (CTP) Protects Mitochondrial Function in Cancer -- 2.2 ATP Citrate Lyase (ACLY) Is Upregulated in Cancer -- 2.3 Multifaceted Effects of Inhibiting Acetyl-CoA Carboxylase (ACC) in Cancer -- 2.4 The First Fatty Acid Synthase (FAS) Inhibitor TVB-2640 Is in Clinical Trials for Cancer -- 2.5 Which Markers Can Predict Cancer Cell Sensitivity to Lipid Synthesis Inhibition? -- 2.6 Tumor Microenvironment Influences the Sensitivity of Cancer Cells to Lipid Synthesis Inhibitors -- 3 Targeting Fatty Acid Elongation -- 4 The Efficacy of Inhibiting Cholesterol Synthesis with Adjuvant Statins Is Variable -- 5 Fatty Acid Uptake Is Associated with Metastasis -- 6 Fatty Acid Oxidation Encompasses a Diverse Set of Molecular Mechanisms -- 6.1 Targeting FAO for Cancer Therapy May Be Achieved by Inhibiting Carnitine Palmitoyltransferase 1 -- 6.2 CPT1 Inhibitors Are Now in Clinical Trials -- 6.3 FAO for Very-Long-Chain Fatty Acids Occurs at the Peroxisome Where Peroxisome Proliferator-Activated Receptors (PPARs) Act as Ligand-Activated Transcription Factors -- 7 Conclusion -- References -- Part II: Heterogeneity of Cancer Metabolism -- The Multifaceted Glioblastoma: From Genomic Alterations to Metabolic Adaptations -- 1 Introduction -- 2 GBM Classifications and Intratumoral Heterogeneity.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1 GBM Subtype Classification -- 2.2 Intratumoral Heterogeneity -- 2.2.1 Liquid Biopsy as a Method for Detecting Heterogeneity and Longitudinal Tracking -- 2.2.2 Glioblastoma Stem Cell Resistance and Recurrence Are Supported Through Mitochondrial Activity and Fatty Acid Oxidation -- 3 Genomic Alterations Lead to Distinct Metabolic Changes Allowing for Targeted Therapies -- 3.1 PTEN Mutations Lead to High Rates of Glycolysis, Facilitating Survival in Harsh Microenvironments -- 3.2 EGFR Mutations Shift Cancer Cells toward a Glycolytic Phenotype and Permit Survival under Glucose-Deprived Conditions -- 3.3 p53 Mutations Result in Activation of the Warburg Effect -- 3.4 GBM Exhibits Upregulated Glutamine Metabolism Allowing for Targeted Vulnerabilities Through GLS, GS, and mTOR -- 3.5 Lipid Metabolism Dysregulation Following BRAF Mutations and EGFR Signaling Provides Clues for New GBM Therapeutic Strategies -- 3.6 GBMs Rely on the TCA Cycle and Its Reductants -- 3.7 IDH1 Mutations Lead to Oncometabolite Production and Glutamine Addiction and Act as a Prognostic Marker -- 4 Benefits of Combined Therapy -- 5 Advanced Brain Tumors (GBM) Display Distinct Metabolic Profiles Compared to Lower Grade Tumors -- 6 Conclusion -- References -- The Intricate Metabolism of Pancreatic Cancers -- 1 Introduction -- 2 Oncogenic KRAS Regulates Metabolism in Pancreatic Cancer Cells (Fig. 2) -- 2.1 Oncogenic KRAS Regulates Glutamine Metabolism -- 2.2 Oncogenic KRAS Regulates Glucose Metabolism -- 2.3 Oncogenic KRAS Upregulates Macropinocytosis and Lipid Scavenging -- 3 Other Alternative Metabolisms in Pancreatic Cancer -- 3.1 MUC1 Overexpression Leads to Increased Glucose Metabolism -- 3.2 p53 Functions Predict the Sensitivity of Pancreatic Cancer Tumors to Glycolytic Inhibition -- 3.3 Alternative Source of Glutamate in PDAC.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3.1 Neurotransmitter N-Acetyl-Aspartyl-Glutamate (NAAG) as a Glutamate Reservoir in Cancer -- 3.3.2 Glutaminase II Pathway Is Another Source of Glutamate in Cancer -- 4 Pancreatic Tumor Microenvironment -- 4.1 PDACs are Dependent on Autophagy -- 4.2 Stromal Interactions Create Complex PDAC Metabolic Networks -- 5 Suggested Therapy (Fig. 3) -- 5.1 Targeting Alpha-Ketoglutarate Dehydrogenase Complex Function by CPI-613 to Slow Mitochondrial Metabolism -- 5.2 Antidiabetic Drug, Metformin, Targets Pancreatic Cancer Stem Cells -- 5.3 Combined Therapy to Target Pancreatic Metabolism Heterogeneity -- 5.4 Targeting PDACs Based on Metabolic Subtype within the PDAC Tumor Microenvironment -- 5.5 Autophagy Inhibition via Hydroxychloroquine -- 6 Conclusion -- References -- The Heterogeneity of Breast Cancer Metabolism -- 1 Introduction -- 2 Aberrant Metabolic Pathways Present in Breast Cancer Contribute to Breast Cancer Heterogeneity (Fig. 1) -- 2.1 Differences in Glycolytic Upregulation Among Breast Cancer Subtypes Can Be Attributed to Glucose Transporter (GLUT) Expression -- 2.2 Choline Metabolism in Breast Cancer Is Strongly Associated with Tumor Grades -- 3 Different Roles of Estrogen in Estrogen Metabolism and ER Binding Promote Breast Cancer Tumorigenicity -- 3.1 PHGDH Overexpression in Serine Biosynthesis Fuels TCA Anaplerosis -- 4 The Clinical Applications of Metabolic Profiling -- 4.1 Breast Cancer Diagnosis and Subtyping Using Metabolomics -- 4.2 Metabolic Profiling as a Strategy for Prediction of Recurrence in Breast Cancer -- 4.3 Metabolic Fingerprinting in Breast Cancer Metastasis -- 4.4 Prediction of Response to Therapy Based on Metabolic Phenotypes -- 5 Additional Perspectives on Breast Cancer Heterogeneity -- 5.1 Spatial Pathogenesis Observed in Breast Cancer Metabolism.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2 Temporal Pathogenesis Observed in Breast Cancer Metabolism: Metabolic Differences Between Early Stage and Advanced Stage -- 5.3 Metabolic Heterogeneity Influences Effective Breast Cancer Drug Treatment -- 6 Conclusion -- References -- Non-Hodgkin Lymphoma Metabolism -- 1 Introduction -- 2 Lymphoma Metabolism Exhibits Multifaceted Characteristic Features Which Are Correlated to Poor Prognosis -- 2.1 Aggressive Lymphomas Exhibit the Warburg Effect -- 2.2 Lactic Acidosis Is a Result of Overproduction of Lactate and Leads to a Fatal Prognosis -- 3 Genetic Alterations Lead to Different Metabolic Phenotypes in NHL (Fig. 2) -- 3.1 Mutation of p53 Helps Cancer Cells Survive Glutamine Deprivation -- 3.2 PI3K Regulates Fatty Acid Synthesis (FAS) in Primary Effusion Lymphoma (PEL) and Other B-NHLs -- 3.3 AMPK Regulates NADPH Balance for Fatty Acid Oxidation (FAO) as a Means of Supplementing the Tricarboxylic Acid (TCA) Cycle -- 3.4 PRPS2 Couples Protein and Nucleotide Biosynthesis to Drive Lymphomagenesis -- 3.5 mTOR Activation Promotes Fatty Acid Synthesis (FAS) -- 3.6 MYC Regulates Cancer Cell Metabolism under Glucose-Deprived and Hypoxic Conditions -- 3.7 HIF-1 Acts as a Regulator in Hypoxia Adaptation and the Related Metabolic Changes -- 3.8 Understanding the PI3K/AKT/mTOR Pathway in Lymphoma Can Lead to a Variety of Treatments -- 4 Metabolic Profiling for Monitoring Tumor Progression and Guiding Treatment -- 4.1 [18F]FDG PET/CT -- 4.2 Systemic NAAG Concentrations for Tumor Growth Monitoring -- 5 Conclusion -- References -- The Heterogeneity Metabolism of Renal Cell Carcinomas -- 1 Introduction -- 2 Different Oncogenic Mutations Lead to Different Metabolic Phenotypes in RCC (Fig. 1) -- 2.1 Loss of the von Hippel-Lindau Tumor-Suppressor Gene Results in Metabolic Alterations Including Shifts Toward Aerobic Glycolysis in RCC.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2 Fumarate Hydratase Mutations Result in an Increase in Aerobic Glycolysis in RCC.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Le, Anne</subfield><subfield code="t">The Heterogeneity of Cancer Metabolism</subfield><subfield code="d">Cham : Springer International Publishing AG,c2021</subfield><subfield code="z">9783030657673</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advances in Experimental Medicine and Biology Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6628607</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>