Introduction to Epigenetics.

Saved in:
Bibliographic Details
Superior document:Learning Materials in Biosciences Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Learning Materials in Biosciences Series
Online Access:
Physical Description:1 online resource (219 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006525474
ctrlnum (MiAaPQ)5006525474
(Au-PeEL)EBL6525474
(OCoLC)1244536414
collection bib_alma
record_format marc
spelling Paro, Renato.
Introduction to Epigenetics.
1st ed.
Cham : Springer International Publishing AG, 2021.
©2021.
1 online resource (219 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Learning Materials in Biosciences Series
Intro -- Preface -- Acknowledgments -- Contents -- 1: Biology of Chromatin -- 1.1 Introduction: Epigenetic Regulation in the Context of the Genome -- 1.1.1 Background: Gene Expression and Chromatin -- 1.1.2 Discovery of the Nucleosomal Structure of the Genome -- 1.2 The Structure of the Nucleosome -- 1.2.1 Histone Variants -- 1.3 Histone Modifications -- 1.3.1 Nomenclature for Histone Modifications -- 1.3.2 Combinatorial Modifications at Pericentric Heterochromatin -- 1.3.3 Histone Modifications at High Resolution -- 1.3.4 Chromatin Modifications Associated with Transcription Units -- 1.3.5 A Concept of Writers, Readers, and Erasers of Histone Modifications -- Method Box 1.1: Chromatin Immunoprecipitation -- 1.4 DNA Modifications -- 1.4.1 DNA Cytosine Methylation -- 1.4.2 DNA Cytosine Hydroxymethylation -- 1.4.3 Interaction of DNA and Histone Modifications -- Method Box 1.2: Analysis of DNA Modifications -- 1.5 Chromatin Organization and Compartmentalization in the Cell Nucleus -- 1.5.1 Replication of Pericentric Heterochromatin Domains -- 1.5.2 Topologically Associating Domains -- 1.5.3 Structural Maintenance of Chromosomes Complexes -- Method Box 1.3: Chromatin Conformation Capture (. Box Fig. 1.3) -- References -- 2: Chromatin Dynamics -- 2.1 Basic Nuclear Activities -- 2.2 Connecting Nucleosomes to DNA Sequence -- 2.3 Nucleosome Remodeling -- 2.3.1 A Template for Transcription -- 2.3.2 Chromatin Remodeling Complexes -- Methods Box 2.1: Determining DNA Accessibility in a Chromatin Template -- 2.4 Nucleosome Assembly -- 2.4.1 Histone Variants and Histone Chaperones -- 2.4.2 The Replication Fork: Still the Major Enigma in Epigenetics -- References -- 3: Cellular Memory -- 3.1 Maintaining Cellular Fates -- 3.2 PcG/TrxG System Maintaining Cellular Memory.
3.3 Biochemical Characterization and Molecular Function of PcG/TrxG Proteins -- 3.4 Targeting and Propagation of PcG/TrxG-Controlled Chromatin Domains -- 3.5 Switching Memory and the Role of Non-coding RNAs -- 3.6 Losing Memory -- References -- 4: Dosage Compensation Systems -- 4.1 Introduction: Evolution of Chromosome-Wide Dosage Compensation -- 4.1.1 Consequences of Gene Dosage Differences Arising from Sex Chromosome Erosion -- 4.2 The Dosage Compensation Complex of the Fruit Fly Drosophila melanogaster -- 4.3 X Chromosome Inactivation in Mammals -- 4.3.1 The Mammalian Dosage Compensation Mechanism -- 4.3.2 Regulation of XCI in Different Mammals -- 4.4 X Chromosome Dosage Compensation in Caenorhabditis elegans -- References -- 5: Genomic Imprinting -- 5.1 Discovery of the Non-equivalence of Maternal and Paternal Genomes -- 5.1.1 Genome-Wide Imprinting in Insects -- 5.1.2 Discovery of Genomic Imprinting at an Individual Locus in Maize -- 5.1.3 Demonstrating the Non-equivalence of Parental Genomes in Mammals -- 5.2 Characteristics of Imprinted Genes in Mammals -- 5.2.1 Molecular Characteristics of Imprinted Gene Clusters -- 5.2.2 Molecular Mechanisms Leading to Imprinted Expression -- 5.2.3 The Life Cycle of a Genomic Imprint -- 5.3 Genomic Imprinting and Human Disease -- 5.4 Genomic Imprinting in Flowering Plants -- 5.4.1 Genomic Imprinting Occurs Predominantly in the Endosperm But Also Exists in the Embryo -- 5.4.2 Mechanisms Underlying Imprinting Show Similarities Between Mammals and Plants -- 5.5 Evolution of Genomic Imprinting -- References -- 6: RNA-Based Mechanisms of Gene Silencing -- 6.1 The Unusual Behavior of Transgenes Led to the Discovery of Novel RNA-Based Silencing Mechanisms -- 6.1.1 Conserved Components of RNA-Based Silencing Mechanisms -- 6.2 Post-Transcriptional Gene Silencing (PTGS).
6.2.1 The Biogenesis and Function of microRNAs -- 6.2.2 Genome Defense by siRNA-Mediated Silencing -- 6.3 Transcriptional Gene Silencing (TGS) -- 6.4 Paramutation -- 6.4.1 The cis-Regulatory Elements Controlling Paramutation and trans-Acting Factors Link Paramutation to RdDM -- References -- 7: Regeneration and Reprogramming -- 7.1 Types of Regenerative Phenomena -- 7.1.1 Regenerating from a Blastema -- 7.1.2 Changing Potency by Transdifferentiation -- 7.1.3 Signaling in the Blastema -- 7.2 Stem Cells in the Adult -- 7.3 Sources of Pluripotent Stem Cells -- 7.4 Chromatin Dynamics During Reprogramming -- 7.5 Regenerative Therapies -- References -- 8: Epigenetics and Cancer -- 8.1 Epigenetics and Cancer -- 8.2 DNA Methylation and Cancer -- 8.2.1 DNA Hypermethylation in Cancer -- 8.2.2 DNA Hypomethylation in Cancer -- 8.2.3 Loss of Imprinting Through Alterations of DNA Methylation -- 8.2.4 Mutations in the DNA Methylation Machinery in Cancers -- 8.2.4.1 Mutations of de novo DNA Methyltransferase 3a -- 8.2.4.2 Mutations of Ten-Eleven Translocation 2 (TET2) -- 8.2.5 Epigenetic Inhibitors of DNA Methyltransferases in Cancer Therapy -- 8.3 Polycomb Group Proteins and Cancer -- 8.3.1 Alterations of PcG Activity in Cancer -- 8.3.2 Mutations of Affecting Lysine 27 of Histone H3 Occur in Multiple Cancers -- 8.3.3 EZH2 Inhibitors in Cancer Therapy -- 8.4 Histone Acetylation and Deacetylation in Cancers -- 8.4.1 Alterations of Histone Acetyltransferases in Cancer -- 8.4.2 Acetyl-Lysine Recognition Proteins and Cancer -- 8.4.3 Alterations of Histone Deacetylases in Cancer -- 8.4.4 HAT and HDAC Inhibitors in Cancer Therapy -- 8.5 Chromatin Remodeling Factors and Cancer -- 8.5.1 SWI/SNF Complexes and Cancer -- 8.5.2 ISWI Complexes and Cancer -- 8.5.3 The NuRD Complex and Cancer -- 8.5.4 The INO80 Complex and Cancer -- References.
9: Epigenetics and Metabolism -- 9.1 Epigenetics and Metabolism -- 9.2 Acetyl-Coenzyme A (Acetyl-CoA) -- 9.2.1 Biosynthesis of Acetyl-CoA -- 9.2.2 Acetyl-CoA as Cofactor of Histone Acetyltransferases -- 9.3 Nicotinamide Adenine Dinucleotide (NAD) -- 9.3.1 Biosynthesis of NAD -- 9.3.2 NAD as Cofactor of Sirtuins and PARPs -- 9.3.2.1 Sirtuins -- 9.3.2.2 PARPs -- 9.4 S-adenosylmethionine (SAM) -- 9.4.1 Biosynthesis of SAM -- 9.4.2 SAM as Cofactor of DNA and Histone Methyltransferases -- 9.5 Flavin Adenine Dinucleotide (FAD) -- 9.5.1 Biosynthesis of FAD -- 9.5.2 FAD as Cofactor of Lysine Demethylase 1 (LSD1) -- 9.6 α-Ketoglutarate (αKG) -- 9.6.1 Biosynthesis of α-Ketoglutarate -- 9.6.2 αKG as Cofactor of TET-Family DNA Demethylases and Jumonji C-Family Histone Demethylases -- References -- Glossary -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Grossniklaus, Ueli.
Santoro, Raffaella.
Wutz, Anton.
Print version: Paro, Renato Introduction to Epigenetics Cham : Springer International Publishing AG,c2021 9783030686697
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6525474 Click to View
language English
format eBook
author Paro, Renato.
spellingShingle Paro, Renato.
Introduction to Epigenetics.
Learning Materials in Biosciences Series
Intro -- Preface -- Acknowledgments -- Contents -- 1: Biology of Chromatin -- 1.1 Introduction: Epigenetic Regulation in the Context of the Genome -- 1.1.1 Background: Gene Expression and Chromatin -- 1.1.2 Discovery of the Nucleosomal Structure of the Genome -- 1.2 The Structure of the Nucleosome -- 1.2.1 Histone Variants -- 1.3 Histone Modifications -- 1.3.1 Nomenclature for Histone Modifications -- 1.3.2 Combinatorial Modifications at Pericentric Heterochromatin -- 1.3.3 Histone Modifications at High Resolution -- 1.3.4 Chromatin Modifications Associated with Transcription Units -- 1.3.5 A Concept of Writers, Readers, and Erasers of Histone Modifications -- Method Box 1.1: Chromatin Immunoprecipitation -- 1.4 DNA Modifications -- 1.4.1 DNA Cytosine Methylation -- 1.4.2 DNA Cytosine Hydroxymethylation -- 1.4.3 Interaction of DNA and Histone Modifications -- Method Box 1.2: Analysis of DNA Modifications -- 1.5 Chromatin Organization and Compartmentalization in the Cell Nucleus -- 1.5.1 Replication of Pericentric Heterochromatin Domains -- 1.5.2 Topologically Associating Domains -- 1.5.3 Structural Maintenance of Chromosomes Complexes -- Method Box 1.3: Chromatin Conformation Capture (. Box Fig. 1.3) -- References -- 2: Chromatin Dynamics -- 2.1 Basic Nuclear Activities -- 2.2 Connecting Nucleosomes to DNA Sequence -- 2.3 Nucleosome Remodeling -- 2.3.1 A Template for Transcription -- 2.3.2 Chromatin Remodeling Complexes -- Methods Box 2.1: Determining DNA Accessibility in a Chromatin Template -- 2.4 Nucleosome Assembly -- 2.4.1 Histone Variants and Histone Chaperones -- 2.4.2 The Replication Fork: Still the Major Enigma in Epigenetics -- References -- 3: Cellular Memory -- 3.1 Maintaining Cellular Fates -- 3.2 PcG/TrxG System Maintaining Cellular Memory.
3.3 Biochemical Characterization and Molecular Function of PcG/TrxG Proteins -- 3.4 Targeting and Propagation of PcG/TrxG-Controlled Chromatin Domains -- 3.5 Switching Memory and the Role of Non-coding RNAs -- 3.6 Losing Memory -- References -- 4: Dosage Compensation Systems -- 4.1 Introduction: Evolution of Chromosome-Wide Dosage Compensation -- 4.1.1 Consequences of Gene Dosage Differences Arising from Sex Chromosome Erosion -- 4.2 The Dosage Compensation Complex of the Fruit Fly Drosophila melanogaster -- 4.3 X Chromosome Inactivation in Mammals -- 4.3.1 The Mammalian Dosage Compensation Mechanism -- 4.3.2 Regulation of XCI in Different Mammals -- 4.4 X Chromosome Dosage Compensation in Caenorhabditis elegans -- References -- 5: Genomic Imprinting -- 5.1 Discovery of the Non-equivalence of Maternal and Paternal Genomes -- 5.1.1 Genome-Wide Imprinting in Insects -- 5.1.2 Discovery of Genomic Imprinting at an Individual Locus in Maize -- 5.1.3 Demonstrating the Non-equivalence of Parental Genomes in Mammals -- 5.2 Characteristics of Imprinted Genes in Mammals -- 5.2.1 Molecular Characteristics of Imprinted Gene Clusters -- 5.2.2 Molecular Mechanisms Leading to Imprinted Expression -- 5.2.3 The Life Cycle of a Genomic Imprint -- 5.3 Genomic Imprinting and Human Disease -- 5.4 Genomic Imprinting in Flowering Plants -- 5.4.1 Genomic Imprinting Occurs Predominantly in the Endosperm But Also Exists in the Embryo -- 5.4.2 Mechanisms Underlying Imprinting Show Similarities Between Mammals and Plants -- 5.5 Evolution of Genomic Imprinting -- References -- 6: RNA-Based Mechanisms of Gene Silencing -- 6.1 The Unusual Behavior of Transgenes Led to the Discovery of Novel RNA-Based Silencing Mechanisms -- 6.1.1 Conserved Components of RNA-Based Silencing Mechanisms -- 6.2 Post-Transcriptional Gene Silencing (PTGS).
6.2.1 The Biogenesis and Function of microRNAs -- 6.2.2 Genome Defense by siRNA-Mediated Silencing -- 6.3 Transcriptional Gene Silencing (TGS) -- 6.4 Paramutation -- 6.4.1 The cis-Regulatory Elements Controlling Paramutation and trans-Acting Factors Link Paramutation to RdDM -- References -- 7: Regeneration and Reprogramming -- 7.1 Types of Regenerative Phenomena -- 7.1.1 Regenerating from a Blastema -- 7.1.2 Changing Potency by Transdifferentiation -- 7.1.3 Signaling in the Blastema -- 7.2 Stem Cells in the Adult -- 7.3 Sources of Pluripotent Stem Cells -- 7.4 Chromatin Dynamics During Reprogramming -- 7.5 Regenerative Therapies -- References -- 8: Epigenetics and Cancer -- 8.1 Epigenetics and Cancer -- 8.2 DNA Methylation and Cancer -- 8.2.1 DNA Hypermethylation in Cancer -- 8.2.2 DNA Hypomethylation in Cancer -- 8.2.3 Loss of Imprinting Through Alterations of DNA Methylation -- 8.2.4 Mutations in the DNA Methylation Machinery in Cancers -- 8.2.4.1 Mutations of de novo DNA Methyltransferase 3a -- 8.2.4.2 Mutations of Ten-Eleven Translocation 2 (TET2) -- 8.2.5 Epigenetic Inhibitors of DNA Methyltransferases in Cancer Therapy -- 8.3 Polycomb Group Proteins and Cancer -- 8.3.1 Alterations of PcG Activity in Cancer -- 8.3.2 Mutations of Affecting Lysine 27 of Histone H3 Occur in Multiple Cancers -- 8.3.3 EZH2 Inhibitors in Cancer Therapy -- 8.4 Histone Acetylation and Deacetylation in Cancers -- 8.4.1 Alterations of Histone Acetyltransferases in Cancer -- 8.4.2 Acetyl-Lysine Recognition Proteins and Cancer -- 8.4.3 Alterations of Histone Deacetylases in Cancer -- 8.4.4 HAT and HDAC Inhibitors in Cancer Therapy -- 8.5 Chromatin Remodeling Factors and Cancer -- 8.5.1 SWI/SNF Complexes and Cancer -- 8.5.2 ISWI Complexes and Cancer -- 8.5.3 The NuRD Complex and Cancer -- 8.5.4 The INO80 Complex and Cancer -- References.
9: Epigenetics and Metabolism -- 9.1 Epigenetics and Metabolism -- 9.2 Acetyl-Coenzyme A (Acetyl-CoA) -- 9.2.1 Biosynthesis of Acetyl-CoA -- 9.2.2 Acetyl-CoA as Cofactor of Histone Acetyltransferases -- 9.3 Nicotinamide Adenine Dinucleotide (NAD) -- 9.3.1 Biosynthesis of NAD -- 9.3.2 NAD as Cofactor of Sirtuins and PARPs -- 9.3.2.1 Sirtuins -- 9.3.2.2 PARPs -- 9.4 S-adenosylmethionine (SAM) -- 9.4.1 Biosynthesis of SAM -- 9.4.2 SAM as Cofactor of DNA and Histone Methyltransferases -- 9.5 Flavin Adenine Dinucleotide (FAD) -- 9.5.1 Biosynthesis of FAD -- 9.5.2 FAD as Cofactor of Lysine Demethylase 1 (LSD1) -- 9.6 α-Ketoglutarate (αKG) -- 9.6.1 Biosynthesis of α-Ketoglutarate -- 9.6.2 αKG as Cofactor of TET-Family DNA Demethylases and Jumonji C-Family Histone Demethylases -- References -- Glossary -- Index.
author_facet Paro, Renato.
Grossniklaus, Ueli.
Santoro, Raffaella.
Wutz, Anton.
author_variant r p rp
author2 Grossniklaus, Ueli.
Santoro, Raffaella.
Wutz, Anton.
author2_variant u g ug
r s rs
a w aw
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Paro, Renato.
title Introduction to Epigenetics.
title_full Introduction to Epigenetics.
title_fullStr Introduction to Epigenetics.
title_full_unstemmed Introduction to Epigenetics.
title_auth Introduction to Epigenetics.
title_new Introduction to Epigenetics.
title_sort introduction to epigenetics.
series Learning Materials in Biosciences Series
series2 Learning Materials in Biosciences Series
publisher Springer International Publishing AG,
publishDate 2021
physical 1 online resource (219 pages)
edition 1st ed.
contents Intro -- Preface -- Acknowledgments -- Contents -- 1: Biology of Chromatin -- 1.1 Introduction: Epigenetic Regulation in the Context of the Genome -- 1.1.1 Background: Gene Expression and Chromatin -- 1.1.2 Discovery of the Nucleosomal Structure of the Genome -- 1.2 The Structure of the Nucleosome -- 1.2.1 Histone Variants -- 1.3 Histone Modifications -- 1.3.1 Nomenclature for Histone Modifications -- 1.3.2 Combinatorial Modifications at Pericentric Heterochromatin -- 1.3.3 Histone Modifications at High Resolution -- 1.3.4 Chromatin Modifications Associated with Transcription Units -- 1.3.5 A Concept of Writers, Readers, and Erasers of Histone Modifications -- Method Box 1.1: Chromatin Immunoprecipitation -- 1.4 DNA Modifications -- 1.4.1 DNA Cytosine Methylation -- 1.4.2 DNA Cytosine Hydroxymethylation -- 1.4.3 Interaction of DNA and Histone Modifications -- Method Box 1.2: Analysis of DNA Modifications -- 1.5 Chromatin Organization and Compartmentalization in the Cell Nucleus -- 1.5.1 Replication of Pericentric Heterochromatin Domains -- 1.5.2 Topologically Associating Domains -- 1.5.3 Structural Maintenance of Chromosomes Complexes -- Method Box 1.3: Chromatin Conformation Capture (. Box Fig. 1.3) -- References -- 2: Chromatin Dynamics -- 2.1 Basic Nuclear Activities -- 2.2 Connecting Nucleosomes to DNA Sequence -- 2.3 Nucleosome Remodeling -- 2.3.1 A Template for Transcription -- 2.3.2 Chromatin Remodeling Complexes -- Methods Box 2.1: Determining DNA Accessibility in a Chromatin Template -- 2.4 Nucleosome Assembly -- 2.4.1 Histone Variants and Histone Chaperones -- 2.4.2 The Replication Fork: Still the Major Enigma in Epigenetics -- References -- 3: Cellular Memory -- 3.1 Maintaining Cellular Fates -- 3.2 PcG/TrxG System Maintaining Cellular Memory.
3.3 Biochemical Characterization and Molecular Function of PcG/TrxG Proteins -- 3.4 Targeting and Propagation of PcG/TrxG-Controlled Chromatin Domains -- 3.5 Switching Memory and the Role of Non-coding RNAs -- 3.6 Losing Memory -- References -- 4: Dosage Compensation Systems -- 4.1 Introduction: Evolution of Chromosome-Wide Dosage Compensation -- 4.1.1 Consequences of Gene Dosage Differences Arising from Sex Chromosome Erosion -- 4.2 The Dosage Compensation Complex of the Fruit Fly Drosophila melanogaster -- 4.3 X Chromosome Inactivation in Mammals -- 4.3.1 The Mammalian Dosage Compensation Mechanism -- 4.3.2 Regulation of XCI in Different Mammals -- 4.4 X Chromosome Dosage Compensation in Caenorhabditis elegans -- References -- 5: Genomic Imprinting -- 5.1 Discovery of the Non-equivalence of Maternal and Paternal Genomes -- 5.1.1 Genome-Wide Imprinting in Insects -- 5.1.2 Discovery of Genomic Imprinting at an Individual Locus in Maize -- 5.1.3 Demonstrating the Non-equivalence of Parental Genomes in Mammals -- 5.2 Characteristics of Imprinted Genes in Mammals -- 5.2.1 Molecular Characteristics of Imprinted Gene Clusters -- 5.2.2 Molecular Mechanisms Leading to Imprinted Expression -- 5.2.3 The Life Cycle of a Genomic Imprint -- 5.3 Genomic Imprinting and Human Disease -- 5.4 Genomic Imprinting in Flowering Plants -- 5.4.1 Genomic Imprinting Occurs Predominantly in the Endosperm But Also Exists in the Embryo -- 5.4.2 Mechanisms Underlying Imprinting Show Similarities Between Mammals and Plants -- 5.5 Evolution of Genomic Imprinting -- References -- 6: RNA-Based Mechanisms of Gene Silencing -- 6.1 The Unusual Behavior of Transgenes Led to the Discovery of Novel RNA-Based Silencing Mechanisms -- 6.1.1 Conserved Components of RNA-Based Silencing Mechanisms -- 6.2 Post-Transcriptional Gene Silencing (PTGS).
6.2.1 The Biogenesis and Function of microRNAs -- 6.2.2 Genome Defense by siRNA-Mediated Silencing -- 6.3 Transcriptional Gene Silencing (TGS) -- 6.4 Paramutation -- 6.4.1 The cis-Regulatory Elements Controlling Paramutation and trans-Acting Factors Link Paramutation to RdDM -- References -- 7: Regeneration and Reprogramming -- 7.1 Types of Regenerative Phenomena -- 7.1.1 Regenerating from a Blastema -- 7.1.2 Changing Potency by Transdifferentiation -- 7.1.3 Signaling in the Blastema -- 7.2 Stem Cells in the Adult -- 7.3 Sources of Pluripotent Stem Cells -- 7.4 Chromatin Dynamics During Reprogramming -- 7.5 Regenerative Therapies -- References -- 8: Epigenetics and Cancer -- 8.1 Epigenetics and Cancer -- 8.2 DNA Methylation and Cancer -- 8.2.1 DNA Hypermethylation in Cancer -- 8.2.2 DNA Hypomethylation in Cancer -- 8.2.3 Loss of Imprinting Through Alterations of DNA Methylation -- 8.2.4 Mutations in the DNA Methylation Machinery in Cancers -- 8.2.4.1 Mutations of de novo DNA Methyltransferase 3a -- 8.2.4.2 Mutations of Ten-Eleven Translocation 2 (TET2) -- 8.2.5 Epigenetic Inhibitors of DNA Methyltransferases in Cancer Therapy -- 8.3 Polycomb Group Proteins and Cancer -- 8.3.1 Alterations of PcG Activity in Cancer -- 8.3.2 Mutations of Affecting Lysine 27 of Histone H3 Occur in Multiple Cancers -- 8.3.3 EZH2 Inhibitors in Cancer Therapy -- 8.4 Histone Acetylation and Deacetylation in Cancers -- 8.4.1 Alterations of Histone Acetyltransferases in Cancer -- 8.4.2 Acetyl-Lysine Recognition Proteins and Cancer -- 8.4.3 Alterations of Histone Deacetylases in Cancer -- 8.4.4 HAT and HDAC Inhibitors in Cancer Therapy -- 8.5 Chromatin Remodeling Factors and Cancer -- 8.5.1 SWI/SNF Complexes and Cancer -- 8.5.2 ISWI Complexes and Cancer -- 8.5.3 The NuRD Complex and Cancer -- 8.5.4 The INO80 Complex and Cancer -- References.
9: Epigenetics and Metabolism -- 9.1 Epigenetics and Metabolism -- 9.2 Acetyl-Coenzyme A (Acetyl-CoA) -- 9.2.1 Biosynthesis of Acetyl-CoA -- 9.2.2 Acetyl-CoA as Cofactor of Histone Acetyltransferases -- 9.3 Nicotinamide Adenine Dinucleotide (NAD) -- 9.3.1 Biosynthesis of NAD -- 9.3.2 NAD as Cofactor of Sirtuins and PARPs -- 9.3.2.1 Sirtuins -- 9.3.2.2 PARPs -- 9.4 S-adenosylmethionine (SAM) -- 9.4.1 Biosynthesis of SAM -- 9.4.2 SAM as Cofactor of DNA and Histone Methyltransferases -- 9.5 Flavin Adenine Dinucleotide (FAD) -- 9.5.1 Biosynthesis of FAD -- 9.5.2 FAD as Cofactor of Lysine Demethylase 1 (LSD1) -- 9.6 α-Ketoglutarate (αKG) -- 9.6.1 Biosynthesis of α-Ketoglutarate -- 9.6.2 αKG as Cofactor of TET-Family DNA Demethylases and Jumonji C-Family Histone Demethylases -- References -- Glossary -- Index.
isbn 9783030686703
9783030686697
callnumber-first Q - Science
callnumber-subject QH - Natural History and Biology
callnumber-label QH426-470
callnumber-sort QH 3426 3470
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6525474
illustrated Not Illustrated
oclc_num 1244536414
work_keys_str_mv AT parorenato introductiontoepigenetics
AT grossniklausueli introductiontoepigenetics
AT santororaffaella introductiontoepigenetics
AT wutzanton introductiontoepigenetics
status_str n
ids_txt_mv (MiAaPQ)5006525474
(Au-PeEL)EBL6525474
(OCoLC)1244536414
carrierType_str_mv cr
hierarchy_parent_title Learning Materials in Biosciences Series
is_hierarchy_title Introduction to Epigenetics.
container_title Learning Materials in Biosciences Series
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
_version_ 1792331059571982336
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08879nam a22004693i 4500</leader><controlfield tag="001">5006525474</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073839.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2021 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030686703</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030686697</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006525474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6525474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1244536414</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paro, Renato.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Epigenetics.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (219 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Learning Materials in Biosciences Series</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgments -- Contents -- 1: Biology of Chromatin -- 1.1 Introduction: Epigenetic Regulation in the Context of the Genome -- 1.1.1 Background: Gene Expression and Chromatin -- 1.1.2 Discovery of the Nucleosomal Structure of the Genome -- 1.2 The Structure of the Nucleosome -- 1.2.1 Histone Variants -- 1.3 Histone Modifications -- 1.3.1 Nomenclature for Histone Modifications -- 1.3.2 Combinatorial Modifications at Pericentric Heterochromatin -- 1.3.3 Histone Modifications at High Resolution -- 1.3.4 Chromatin Modifications Associated with Transcription Units -- 1.3.5 A Concept of Writers, Readers, and Erasers of Histone Modifications -- Method Box 1.1: Chromatin Immunoprecipitation -- 1.4 DNA Modifications -- 1.4.1 DNA Cytosine Methylation -- 1.4.2 DNA Cytosine Hydroxymethylation -- 1.4.3 Interaction of DNA and Histone Modifications -- Method Box 1.2: Analysis of DNA Modifications -- 1.5 Chromatin Organization and Compartmentalization in the Cell Nucleus -- 1.5.1 Replication of Pericentric Heterochromatin Domains -- 1.5.2 Topologically Associating Domains -- 1.5.3 Structural Maintenance of Chromosomes Complexes -- Method Box 1.3: Chromatin Conformation Capture (. Box Fig. 1.3) -- References -- 2: Chromatin Dynamics -- 2.1 Basic Nuclear Activities -- 2.2 Connecting Nucleosomes to DNA Sequence -- 2.3 Nucleosome Remodeling -- 2.3.1 A Template for Transcription -- 2.3.2 Chromatin Remodeling Complexes -- Methods Box 2.1: Determining DNA Accessibility in a Chromatin Template -- 2.4 Nucleosome Assembly -- 2.4.1 Histone Variants and Histone Chaperones -- 2.4.2 The Replication Fork: Still the Major Enigma in Epigenetics -- References -- 3: Cellular Memory -- 3.1 Maintaining Cellular Fates -- 3.2 PcG/TrxG System Maintaining Cellular Memory.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3 Biochemical Characterization and Molecular Function of PcG/TrxG Proteins -- 3.4 Targeting and Propagation of PcG/TrxG-Controlled Chromatin Domains -- 3.5 Switching Memory and the Role of Non-coding RNAs -- 3.6 Losing Memory -- References -- 4: Dosage Compensation Systems -- 4.1 Introduction: Evolution of Chromosome-Wide Dosage Compensation -- 4.1.1 Consequences of Gene Dosage Differences Arising from Sex Chromosome Erosion -- 4.2 The Dosage Compensation Complex of the Fruit Fly Drosophila melanogaster -- 4.3 X Chromosome Inactivation in Mammals -- 4.3.1 The Mammalian Dosage Compensation Mechanism -- 4.3.2 Regulation of XCI in Different Mammals -- 4.4 X Chromosome Dosage Compensation in Caenorhabditis elegans -- References -- 5: Genomic Imprinting -- 5.1 Discovery of the Non-equivalence of Maternal and Paternal Genomes -- 5.1.1 Genome-Wide Imprinting in Insects -- 5.1.2 Discovery of Genomic Imprinting at an Individual Locus in Maize -- 5.1.3 Demonstrating the Non-equivalence of Parental Genomes in Mammals -- 5.2 Characteristics of Imprinted Genes in Mammals -- 5.2.1 Molecular Characteristics of Imprinted Gene Clusters -- 5.2.2 Molecular Mechanisms Leading to Imprinted Expression -- 5.2.3 The Life Cycle of a Genomic Imprint -- 5.3 Genomic Imprinting and Human Disease -- 5.4 Genomic Imprinting in Flowering Plants -- 5.4.1 Genomic Imprinting Occurs Predominantly in the Endosperm But Also Exists in the Embryo -- 5.4.2 Mechanisms Underlying Imprinting Show Similarities Between Mammals and Plants -- 5.5 Evolution of Genomic Imprinting -- References -- 6: RNA-Based Mechanisms of Gene Silencing -- 6.1 The Unusual Behavior of Transgenes Led to the Discovery of Novel RNA-Based Silencing Mechanisms -- 6.1.1 Conserved Components of RNA-Based Silencing Mechanisms -- 6.2 Post-Transcriptional Gene Silencing (PTGS).</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.1 The Biogenesis and Function of microRNAs -- 6.2.2 Genome Defense by siRNA-Mediated Silencing -- 6.3 Transcriptional Gene Silencing (TGS) -- 6.4 Paramutation -- 6.4.1 The cis-Regulatory Elements Controlling Paramutation and trans-Acting Factors Link Paramutation to RdDM -- References -- 7: Regeneration and Reprogramming -- 7.1 Types of Regenerative Phenomena -- 7.1.1 Regenerating from a Blastema -- 7.1.2 Changing Potency by Transdifferentiation -- 7.1.3 Signaling in the Blastema -- 7.2 Stem Cells in the Adult -- 7.3 Sources of Pluripotent Stem Cells -- 7.4 Chromatin Dynamics During Reprogramming -- 7.5 Regenerative Therapies -- References -- 8: Epigenetics and Cancer -- 8.1 Epigenetics and Cancer -- 8.2 DNA Methylation and Cancer -- 8.2.1 DNA Hypermethylation in Cancer -- 8.2.2 DNA Hypomethylation in Cancer -- 8.2.3 Loss of Imprinting Through Alterations of DNA Methylation -- 8.2.4 Mutations in the DNA Methylation Machinery in Cancers -- 8.2.4.1 Mutations of de novo DNA Methyltransferase 3a -- 8.2.4.2 Mutations of Ten-Eleven Translocation 2 (TET2) -- 8.2.5 Epigenetic Inhibitors of DNA Methyltransferases in Cancer Therapy -- 8.3 Polycomb Group Proteins and Cancer -- 8.3.1 Alterations of PcG Activity in Cancer -- 8.3.2 Mutations of Affecting Lysine 27 of Histone H3 Occur in Multiple Cancers -- 8.3.3 EZH2 Inhibitors in Cancer Therapy -- 8.4 Histone Acetylation and Deacetylation in Cancers -- 8.4.1 Alterations of Histone Acetyltransferases in Cancer -- 8.4.2 Acetyl-Lysine Recognition Proteins and Cancer -- 8.4.3 Alterations of Histone Deacetylases in Cancer -- 8.4.4 HAT and HDAC Inhibitors in Cancer Therapy -- 8.5 Chromatin Remodeling Factors and Cancer -- 8.5.1 SWI/SNF Complexes and Cancer -- 8.5.2 ISWI Complexes and Cancer -- 8.5.3 The NuRD Complex and Cancer -- 8.5.4 The INO80 Complex and Cancer -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9: Epigenetics and Metabolism -- 9.1 Epigenetics and Metabolism -- 9.2 Acetyl-Coenzyme A (Acetyl-CoA) -- 9.2.1 Biosynthesis of Acetyl-CoA -- 9.2.2 Acetyl-CoA as Cofactor of Histone Acetyltransferases -- 9.3 Nicotinamide Adenine Dinucleotide (NAD) -- 9.3.1 Biosynthesis of NAD -- 9.3.2 NAD as Cofactor of Sirtuins and PARPs -- 9.3.2.1 Sirtuins -- 9.3.2.2 PARPs -- 9.4 S-adenosylmethionine (SAM) -- 9.4.1 Biosynthesis of SAM -- 9.4.2 SAM as Cofactor of DNA and Histone Methyltransferases -- 9.5 Flavin Adenine Dinucleotide (FAD) -- 9.5.1 Biosynthesis of FAD -- 9.5.2 FAD as Cofactor of Lysine Demethylase 1 (LSD1) -- 9.6 α-Ketoglutarate (αKG) -- 9.6.1 Biosynthesis of α-Ketoglutarate -- 9.6.2 αKG as Cofactor of TET-Family DNA Demethylases and Jumonji C-Family Histone Demethylases -- References -- Glossary -- Index.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grossniklaus, Ueli.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santoro, Raffaella.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wutz, Anton.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Paro, Renato</subfield><subfield code="t">Introduction to Epigenetics</subfield><subfield code="d">Cham : Springer International Publishing AG,c2021</subfield><subfield code="z">9783030686697</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Learning Materials in Biosciences Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6525474</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>