Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors.

Saved in:
Bibliographic Details
Superior document:Particle Acceleration and Detection Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
{copy}2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Series:Particle Acceleration and Detection Series
Online Access:
Physical Description:1 online resource (208 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006509884
ctrlnum (MiAaPQ)5006509884
(Au-PeEL)EBL6509884
(OCoLC)1240210729
collection bib_alma
record_format marc
spelling ühwirth, Rudolf.
Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors.
1st ed.
Cham : Springer International Publishing AG, 2021.
{copy}2021.
1 online resource (208 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Particle Acceleration and Detection Series
Intro -- Preface -- Scope -- Content -- Audience -- Acknowledgements -- A Note on the References -- Typesetting and Notation -- Contents -- List of Figures -- List of Tables -- Part I Introduction -- 1 Tracking Detectors -- 1.1 Introduction -- 1.2 Gaseous Tracking Detectors -- 1.2.1 Multi-wire Proportional Chamber -- 1.2.2 Planar Drift Chamber -- 1.2.3 Cylindrical Drift Chamber -- 1.2.4 Drift Tubes -- 1.2.5 Time Projection Chamber -- 1.2.6 Micro-pattern Gas Detectors -- 1.3 Semiconductor Tracking Detectors -- 1.3.1 Silicon Strip Sensors -- 1.3.2 Hybrid Pixel Sensors -- 1.3.3 Silicon Drift Sensors -- 1.4 Scintillating Fiber Trackers -- 1.5 Alignment -- 1.6 Tracking Systems -- 1.6.1 Detectors at the LHC -- 1.6.1.1 ALICE -- 1.6.1.2 ATLAS -- 1.6.1.3 CMS -- 1.6.1.4 LHCb -- 1.6.2 Belle II and CBM -- 1.6.2.1 Belle II -- 1.6.2.2 CBM -- References -- 2 Event Reconstruction -- 2.1 Trigger and Data Acquisition -- 2.1.1 General Remarks -- 2.1.2 The CMS Trigger System -- 2.1.3 The LHCb Trigger System -- 2.2 Track Reconstruction -- 2.3 Vertex Reconstruction -- 2.4 Physics Objects Reconstruction -- 2.4.1 Particle ID by Dedicated Detectors -- 2.4.2 Particle and Object ID by Tracking and Calorimetry -- References -- 3 Statistics and Numerical Methods -- 3.1 Function Minimization -- 3.1.1 Newton-Raphson Method -- 3.1.2 Descent Methods -- 3.1.2.1 Line Search -- 3.1.2.2 Steepest Descent -- 3.1.2.3 Quasi-Newton Methods -- 3.1.2.4 Conjugate Gradients -- 3.1.3 Gradient-Free Methods -- 3.2 Statistical Models and Estimation -- 3.2.1 Linear Regression Models -- 3.2.2 Nonlinear Regression Models -- 3.2.3 State Space Models -- 3.2.3.1 Linear State Space Models and the Kalman Filter -- 3.2.3.2 Nonlinear State Space Models and the Extended Kalman Filter -- 3.3 Clustering -- 3.3.1 Hierarchical Clustering -- 3.3.2 Partitional Clustering -- 3.3.3 Model-Based Clustering.
References -- Part II Track Reconstruction -- 4 Track Models -- 4.1 The Equations of Motion -- 4.2 Track Parametrization -- 4.3 Track Propagation -- 4.3.1 Homogeneous Magnetic Fields -- 4.3.2 Inhomogeneous Magnetic Fields -- 4.3.2.1 Runge-Kutta Methods -- 4.3.2.2 Approximate Analytical Formula -- 4.4 Error Propagation -- 4.4.1 Homogeneous Magnetic Fields -- 4.4.1.1 Transformation from One Curvilinear Frame to Another -- 4.4.1.2 Transformations Between Curvilinear and Local Frames at a Fixed Point on the Particle Trajectory -- 4.4.1.3 Transformations Between Global Cartesian and Local Frames -- 4.4.2 Inhomogeneous Magnetic Fields -- 4.5 Material Effects -- 4.5.1 Multiple Scattering -- 4.5.1.1 The Distribution of the Scattering Angle -- 4.5.1.2 Multiple Scattering in Track Propagation -- 4.5.2 Energy Loss by Ionization -- 4.5.2.1 Mean Energy Loss -- 4.5.2.2 Ionization Energy Loss in Track Propagation -- 4.5.3 Energy Loss by Bremsstrahlung -- 4.5.3.1 Mean and Distribution of the Energy Loss -- 4.5.3.2 Approximation by Gaussian Mixtures -- References -- 5 Track Finding -- 5.1 Basic Techniques -- 5.1.1 Conformal Transformation -- 5.1.2 Hough Transform -- 5.1.3 Artificial Retina -- 5.1.4 Legendre Transform -- 5.1.5 Cellular Automaton -- 5.1.6 Neural Networks -- 5.1.6.1 Hopfield Network -- 5.1.6.2 Recurrent Neural Network -- 5.1.6.3 Graph Neural Network -- 5.1.7 Track Following and the Combinatorial Kalman Filter -- 5.1.8 Pattern Matching -- 5.2 Online Track Finding -- 5.2.1 CDF Vertex Trigger -- 5.2.2 ATLAS Fast Tracker -- 5.2.3 CMS Track Trigger -- 5.2.3.1 Time Multiplexing -- 5.2.3.2 Pattern Matching -- 5.3 Candidate Selection -- References -- 6 Track Fitting -- 6.1 Least-Squares Fitting -- 6.1.1 Least-Squares Regression -- 6.1.2 Extended Kalman Filter -- 6.1.3 Regression with Breakpoints -- 6.1.4 General Broken Lines -- 6.1.5 Triplet Fit.
6.1.6 Fast Track Fit by Affine Transformation -- 6.2 Robust and Adaptive Fitting -- 6.2.1 Robust Regression -- 6.2.2 Deterministic Annealing Filter -- 6.2.3 Gaussian-Sum Filter -- 6.3 Linear Approaches to Circle and Helix Fitting -- 6.3.1 Conformal Mapping Method -- 6.3.2 Chernov and Ososkov's Method -- 6.3.3 Karimäki's Method -- 6.3.4 Riemann Fit -- 6.3.5 Helix Fitting -- 6.4 Track Quality -- 6.4.1 Testing the Track Hypothesis -- 6.4.2 Detection of Outliers -- 6.4.3 Kink Finding -- References -- Part III Vertex Reconstruction -- 7 Vertex Finding -- 7.1 Introduction -- 7.2 Primary Vertex Finding in 1D -- 7.2.1 Divisive Clustering -- 7.2.2 Model-Based Clustering -- 7.2.3 EM Algorithm with Deterministic Annealing -- 7.2.4 Clustering by Deterministic Annealing -- 7.3 Primary Vertex Finding in 3D -- 7.3.1 Preclustering -- 7.3.2 Greedy Clustering -- 7.3.3 Iterated Estimators -- 7.3.4 Topological Vertex Finder -- 7.3.5 Medical Imaging Vertexer -- References -- 8 Vertex Fitting -- 8.1 Least-Squares Fitting -- 8.1.1 Straight Tracks -- 8.1.1.1 Exact Fit -- 8.1.1.2 Simplified Fit -- 8.1.2 Curved Tracks -- 8.1.2.1 Nonlinear Regression -- 8.1.2.2 Extended Kalman Filter -- 8.1.2.3 Fit with Perigee Parameters -- 8.2 Robust and Adaptive Vertex Fitting -- 8.2.1 Vertex Fit with M-Estimator -- 8.2.2 Adaptive Vertex Fit with Annealing -- 8.2.3 Vertex Quality -- 8.3 Kinematic Fit -- References -- 9 Secondary Vertex Reconstruction -- 9.1 Introduction -- 9.2 Decays of Short-Lived Particles -- 9.3 Decays of Long-Lived Particles -- 9.4 Photon Conversions -- 9.5 Hadronic Interactions -- References -- Part IV Case Studies -- 10 LHC Experiments -- 10.1 ALICE -- 10.2 ATLAS -- 10.3 CMS -- 10.4 LHCb -- References -- 11 Belle II and CBM -- 11.1 Belle II -- 11.2 CBM -- References -- A Jacobians of the Parameter Transformations -- Transformation from One Curvilinear Frame to Another.
Transformations Between a Local Frame and the Curvilinear Frame -- Transformations Between the Intermediate Cartesian Frame and the Local Frame -- B Regularization of the Kinematic Fit -- Reference -- C Software -- FairRoot -- ACTS: A Common Tracking Software -- GBL: General Broken Lines -- GENFIT -- RAVE -- References -- Glossary and Abbreviations -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Strandlie, Are.
Print version: ühwirth, Rudolf Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors Cham : Springer International Publishing AG,c2021 9783030657703
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6509884 Click to View
language English
format eBook
author ühwirth, Rudolf.
spellingShingle ühwirth, Rudolf.
Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors.
Particle Acceleration and Detection Series
Intro -- Preface -- Scope -- Content -- Audience -- Acknowledgements -- A Note on the References -- Typesetting and Notation -- Contents -- List of Figures -- List of Tables -- Part I Introduction -- 1 Tracking Detectors -- 1.1 Introduction -- 1.2 Gaseous Tracking Detectors -- 1.2.1 Multi-wire Proportional Chamber -- 1.2.2 Planar Drift Chamber -- 1.2.3 Cylindrical Drift Chamber -- 1.2.4 Drift Tubes -- 1.2.5 Time Projection Chamber -- 1.2.6 Micro-pattern Gas Detectors -- 1.3 Semiconductor Tracking Detectors -- 1.3.1 Silicon Strip Sensors -- 1.3.2 Hybrid Pixel Sensors -- 1.3.3 Silicon Drift Sensors -- 1.4 Scintillating Fiber Trackers -- 1.5 Alignment -- 1.6 Tracking Systems -- 1.6.1 Detectors at the LHC -- 1.6.1.1 ALICE -- 1.6.1.2 ATLAS -- 1.6.1.3 CMS -- 1.6.1.4 LHCb -- 1.6.2 Belle II and CBM -- 1.6.2.1 Belle II -- 1.6.2.2 CBM -- References -- 2 Event Reconstruction -- 2.1 Trigger and Data Acquisition -- 2.1.1 General Remarks -- 2.1.2 The CMS Trigger System -- 2.1.3 The LHCb Trigger System -- 2.2 Track Reconstruction -- 2.3 Vertex Reconstruction -- 2.4 Physics Objects Reconstruction -- 2.4.1 Particle ID by Dedicated Detectors -- 2.4.2 Particle and Object ID by Tracking and Calorimetry -- References -- 3 Statistics and Numerical Methods -- 3.1 Function Minimization -- 3.1.1 Newton-Raphson Method -- 3.1.2 Descent Methods -- 3.1.2.1 Line Search -- 3.1.2.2 Steepest Descent -- 3.1.2.3 Quasi-Newton Methods -- 3.1.2.4 Conjugate Gradients -- 3.1.3 Gradient-Free Methods -- 3.2 Statistical Models and Estimation -- 3.2.1 Linear Regression Models -- 3.2.2 Nonlinear Regression Models -- 3.2.3 State Space Models -- 3.2.3.1 Linear State Space Models and the Kalman Filter -- 3.2.3.2 Nonlinear State Space Models and the Extended Kalman Filter -- 3.3 Clustering -- 3.3.1 Hierarchical Clustering -- 3.3.2 Partitional Clustering -- 3.3.3 Model-Based Clustering.
References -- Part II Track Reconstruction -- 4 Track Models -- 4.1 The Equations of Motion -- 4.2 Track Parametrization -- 4.3 Track Propagation -- 4.3.1 Homogeneous Magnetic Fields -- 4.3.2 Inhomogeneous Magnetic Fields -- 4.3.2.1 Runge-Kutta Methods -- 4.3.2.2 Approximate Analytical Formula -- 4.4 Error Propagation -- 4.4.1 Homogeneous Magnetic Fields -- 4.4.1.1 Transformation from One Curvilinear Frame to Another -- 4.4.1.2 Transformations Between Curvilinear and Local Frames at a Fixed Point on the Particle Trajectory -- 4.4.1.3 Transformations Between Global Cartesian and Local Frames -- 4.4.2 Inhomogeneous Magnetic Fields -- 4.5 Material Effects -- 4.5.1 Multiple Scattering -- 4.5.1.1 The Distribution of the Scattering Angle -- 4.5.1.2 Multiple Scattering in Track Propagation -- 4.5.2 Energy Loss by Ionization -- 4.5.2.1 Mean Energy Loss -- 4.5.2.2 Ionization Energy Loss in Track Propagation -- 4.5.3 Energy Loss by Bremsstrahlung -- 4.5.3.1 Mean and Distribution of the Energy Loss -- 4.5.3.2 Approximation by Gaussian Mixtures -- References -- 5 Track Finding -- 5.1 Basic Techniques -- 5.1.1 Conformal Transformation -- 5.1.2 Hough Transform -- 5.1.3 Artificial Retina -- 5.1.4 Legendre Transform -- 5.1.5 Cellular Automaton -- 5.1.6 Neural Networks -- 5.1.6.1 Hopfield Network -- 5.1.6.2 Recurrent Neural Network -- 5.1.6.3 Graph Neural Network -- 5.1.7 Track Following and the Combinatorial Kalman Filter -- 5.1.8 Pattern Matching -- 5.2 Online Track Finding -- 5.2.1 CDF Vertex Trigger -- 5.2.2 ATLAS Fast Tracker -- 5.2.3 CMS Track Trigger -- 5.2.3.1 Time Multiplexing -- 5.2.3.2 Pattern Matching -- 5.3 Candidate Selection -- References -- 6 Track Fitting -- 6.1 Least-Squares Fitting -- 6.1.1 Least-Squares Regression -- 6.1.2 Extended Kalman Filter -- 6.1.3 Regression with Breakpoints -- 6.1.4 General Broken Lines -- 6.1.5 Triplet Fit.
6.1.6 Fast Track Fit by Affine Transformation -- 6.2 Robust and Adaptive Fitting -- 6.2.1 Robust Regression -- 6.2.2 Deterministic Annealing Filter -- 6.2.3 Gaussian-Sum Filter -- 6.3 Linear Approaches to Circle and Helix Fitting -- 6.3.1 Conformal Mapping Method -- 6.3.2 Chernov and Ososkov's Method -- 6.3.3 Karimäki's Method -- 6.3.4 Riemann Fit -- 6.3.5 Helix Fitting -- 6.4 Track Quality -- 6.4.1 Testing the Track Hypothesis -- 6.4.2 Detection of Outliers -- 6.4.3 Kink Finding -- References -- Part III Vertex Reconstruction -- 7 Vertex Finding -- 7.1 Introduction -- 7.2 Primary Vertex Finding in 1D -- 7.2.1 Divisive Clustering -- 7.2.2 Model-Based Clustering -- 7.2.3 EM Algorithm with Deterministic Annealing -- 7.2.4 Clustering by Deterministic Annealing -- 7.3 Primary Vertex Finding in 3D -- 7.3.1 Preclustering -- 7.3.2 Greedy Clustering -- 7.3.3 Iterated Estimators -- 7.3.4 Topological Vertex Finder -- 7.3.5 Medical Imaging Vertexer -- References -- 8 Vertex Fitting -- 8.1 Least-Squares Fitting -- 8.1.1 Straight Tracks -- 8.1.1.1 Exact Fit -- 8.1.1.2 Simplified Fit -- 8.1.2 Curved Tracks -- 8.1.2.1 Nonlinear Regression -- 8.1.2.2 Extended Kalman Filter -- 8.1.2.3 Fit with Perigee Parameters -- 8.2 Robust and Adaptive Vertex Fitting -- 8.2.1 Vertex Fit with M-Estimator -- 8.2.2 Adaptive Vertex Fit with Annealing -- 8.2.3 Vertex Quality -- 8.3 Kinematic Fit -- References -- 9 Secondary Vertex Reconstruction -- 9.1 Introduction -- 9.2 Decays of Short-Lived Particles -- 9.3 Decays of Long-Lived Particles -- 9.4 Photon Conversions -- 9.5 Hadronic Interactions -- References -- Part IV Case Studies -- 10 LHC Experiments -- 10.1 ALICE -- 10.2 ATLAS -- 10.3 CMS -- 10.4 LHCb -- References -- 11 Belle II and CBM -- 11.1 Belle II -- 11.2 CBM -- References -- A Jacobians of the Parameter Transformations -- Transformation from One Curvilinear Frame to Another.
Transformations Between a Local Frame and the Curvilinear Frame -- Transformations Between the Intermediate Cartesian Frame and the Local Frame -- B Regularization of the Kinematic Fit -- Reference -- C Software -- FairRoot -- ACTS: A Common Tracking Software -- GBL: General Broken Lines -- GENFIT -- RAVE -- References -- Glossary and Abbreviations -- Index.
author_facet ühwirth, Rudolf.
Strandlie, Are.
author_variant r u ru
author2 Strandlie, Are.
author2_variant a s as
author2_role TeilnehmendeR
author_sort ühwirth, Rudolf.
title Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors.
title_full Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors.
title_fullStr Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors.
title_full_unstemmed Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors.
title_auth Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors.
title_new Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors.
title_sort pattern recognition, tracking and vertex reconstruction in particle detectors.
series Particle Acceleration and Detection Series
series2 Particle Acceleration and Detection Series
publisher Springer International Publishing AG,
publishDate 2021
physical 1 online resource (208 pages)
edition 1st ed.
contents Intro -- Preface -- Scope -- Content -- Audience -- Acknowledgements -- A Note on the References -- Typesetting and Notation -- Contents -- List of Figures -- List of Tables -- Part I Introduction -- 1 Tracking Detectors -- 1.1 Introduction -- 1.2 Gaseous Tracking Detectors -- 1.2.1 Multi-wire Proportional Chamber -- 1.2.2 Planar Drift Chamber -- 1.2.3 Cylindrical Drift Chamber -- 1.2.4 Drift Tubes -- 1.2.5 Time Projection Chamber -- 1.2.6 Micro-pattern Gas Detectors -- 1.3 Semiconductor Tracking Detectors -- 1.3.1 Silicon Strip Sensors -- 1.3.2 Hybrid Pixel Sensors -- 1.3.3 Silicon Drift Sensors -- 1.4 Scintillating Fiber Trackers -- 1.5 Alignment -- 1.6 Tracking Systems -- 1.6.1 Detectors at the LHC -- 1.6.1.1 ALICE -- 1.6.1.2 ATLAS -- 1.6.1.3 CMS -- 1.6.1.4 LHCb -- 1.6.2 Belle II and CBM -- 1.6.2.1 Belle II -- 1.6.2.2 CBM -- References -- 2 Event Reconstruction -- 2.1 Trigger and Data Acquisition -- 2.1.1 General Remarks -- 2.1.2 The CMS Trigger System -- 2.1.3 The LHCb Trigger System -- 2.2 Track Reconstruction -- 2.3 Vertex Reconstruction -- 2.4 Physics Objects Reconstruction -- 2.4.1 Particle ID by Dedicated Detectors -- 2.4.2 Particle and Object ID by Tracking and Calorimetry -- References -- 3 Statistics and Numerical Methods -- 3.1 Function Minimization -- 3.1.1 Newton-Raphson Method -- 3.1.2 Descent Methods -- 3.1.2.1 Line Search -- 3.1.2.2 Steepest Descent -- 3.1.2.3 Quasi-Newton Methods -- 3.1.2.4 Conjugate Gradients -- 3.1.3 Gradient-Free Methods -- 3.2 Statistical Models and Estimation -- 3.2.1 Linear Regression Models -- 3.2.2 Nonlinear Regression Models -- 3.2.3 State Space Models -- 3.2.3.1 Linear State Space Models and the Kalman Filter -- 3.2.3.2 Nonlinear State Space Models and the Extended Kalman Filter -- 3.3 Clustering -- 3.3.1 Hierarchical Clustering -- 3.3.2 Partitional Clustering -- 3.3.3 Model-Based Clustering.
References -- Part II Track Reconstruction -- 4 Track Models -- 4.1 The Equations of Motion -- 4.2 Track Parametrization -- 4.3 Track Propagation -- 4.3.1 Homogeneous Magnetic Fields -- 4.3.2 Inhomogeneous Magnetic Fields -- 4.3.2.1 Runge-Kutta Methods -- 4.3.2.2 Approximate Analytical Formula -- 4.4 Error Propagation -- 4.4.1 Homogeneous Magnetic Fields -- 4.4.1.1 Transformation from One Curvilinear Frame to Another -- 4.4.1.2 Transformations Between Curvilinear and Local Frames at a Fixed Point on the Particle Trajectory -- 4.4.1.3 Transformations Between Global Cartesian and Local Frames -- 4.4.2 Inhomogeneous Magnetic Fields -- 4.5 Material Effects -- 4.5.1 Multiple Scattering -- 4.5.1.1 The Distribution of the Scattering Angle -- 4.5.1.2 Multiple Scattering in Track Propagation -- 4.5.2 Energy Loss by Ionization -- 4.5.2.1 Mean Energy Loss -- 4.5.2.2 Ionization Energy Loss in Track Propagation -- 4.5.3 Energy Loss by Bremsstrahlung -- 4.5.3.1 Mean and Distribution of the Energy Loss -- 4.5.3.2 Approximation by Gaussian Mixtures -- References -- 5 Track Finding -- 5.1 Basic Techniques -- 5.1.1 Conformal Transformation -- 5.1.2 Hough Transform -- 5.1.3 Artificial Retina -- 5.1.4 Legendre Transform -- 5.1.5 Cellular Automaton -- 5.1.6 Neural Networks -- 5.1.6.1 Hopfield Network -- 5.1.6.2 Recurrent Neural Network -- 5.1.6.3 Graph Neural Network -- 5.1.7 Track Following and the Combinatorial Kalman Filter -- 5.1.8 Pattern Matching -- 5.2 Online Track Finding -- 5.2.1 CDF Vertex Trigger -- 5.2.2 ATLAS Fast Tracker -- 5.2.3 CMS Track Trigger -- 5.2.3.1 Time Multiplexing -- 5.2.3.2 Pattern Matching -- 5.3 Candidate Selection -- References -- 6 Track Fitting -- 6.1 Least-Squares Fitting -- 6.1.1 Least-Squares Regression -- 6.1.2 Extended Kalman Filter -- 6.1.3 Regression with Breakpoints -- 6.1.4 General Broken Lines -- 6.1.5 Triplet Fit.
6.1.6 Fast Track Fit by Affine Transformation -- 6.2 Robust and Adaptive Fitting -- 6.2.1 Robust Regression -- 6.2.2 Deterministic Annealing Filter -- 6.2.3 Gaussian-Sum Filter -- 6.3 Linear Approaches to Circle and Helix Fitting -- 6.3.1 Conformal Mapping Method -- 6.3.2 Chernov and Ososkov's Method -- 6.3.3 Karimäki's Method -- 6.3.4 Riemann Fit -- 6.3.5 Helix Fitting -- 6.4 Track Quality -- 6.4.1 Testing the Track Hypothesis -- 6.4.2 Detection of Outliers -- 6.4.3 Kink Finding -- References -- Part III Vertex Reconstruction -- 7 Vertex Finding -- 7.1 Introduction -- 7.2 Primary Vertex Finding in 1D -- 7.2.1 Divisive Clustering -- 7.2.2 Model-Based Clustering -- 7.2.3 EM Algorithm with Deterministic Annealing -- 7.2.4 Clustering by Deterministic Annealing -- 7.3 Primary Vertex Finding in 3D -- 7.3.1 Preclustering -- 7.3.2 Greedy Clustering -- 7.3.3 Iterated Estimators -- 7.3.4 Topological Vertex Finder -- 7.3.5 Medical Imaging Vertexer -- References -- 8 Vertex Fitting -- 8.1 Least-Squares Fitting -- 8.1.1 Straight Tracks -- 8.1.1.1 Exact Fit -- 8.1.1.2 Simplified Fit -- 8.1.2 Curved Tracks -- 8.1.2.1 Nonlinear Regression -- 8.1.2.2 Extended Kalman Filter -- 8.1.2.3 Fit with Perigee Parameters -- 8.2 Robust and Adaptive Vertex Fitting -- 8.2.1 Vertex Fit with M-Estimator -- 8.2.2 Adaptive Vertex Fit with Annealing -- 8.2.3 Vertex Quality -- 8.3 Kinematic Fit -- References -- 9 Secondary Vertex Reconstruction -- 9.1 Introduction -- 9.2 Decays of Short-Lived Particles -- 9.3 Decays of Long-Lived Particles -- 9.4 Photon Conversions -- 9.5 Hadronic Interactions -- References -- Part IV Case Studies -- 10 LHC Experiments -- 10.1 ALICE -- 10.2 ATLAS -- 10.3 CMS -- 10.4 LHCb -- References -- 11 Belle II and CBM -- 11.1 Belle II -- 11.2 CBM -- References -- A Jacobians of the Parameter Transformations -- Transformation from One Curvilinear Frame to Another.
Transformations Between a Local Frame and the Curvilinear Frame -- Transformations Between the Intermediate Cartesian Frame and the Local Frame -- B Regularization of the Kinematic Fit -- Reference -- C Software -- FairRoot -- ACTS: A Common Tracking Software -- GBL: General Broken Lines -- GENFIT -- RAVE -- References -- Glossary and Abbreviations -- Index.
isbn 9783030657710
9783030657703
callnumber-first Q - Science
callnumber-subject QC - Physics
callnumber-label QC787
callnumber-sort QC 3787 P3
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6509884
illustrated Not Illustrated
oclc_num 1240210729
work_keys_str_mv AT uhwirthrudolf patternrecognitiontrackingandvertexreconstructioninparticledetectors
AT strandlieare patternrecognitiontrackingandvertexreconstructioninparticledetectors
status_str n
ids_txt_mv (MiAaPQ)5006509884
(Au-PeEL)EBL6509884
(OCoLC)1240210729
carrierType_str_mv cr
hierarchy_parent_title Particle Acceleration and Detection Series
is_hierarchy_title Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors.
container_title Particle Acceleration and Detection Series
author2_original_writing_str_mv noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331059203932160
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07729nam a22004453i 4500</leader><controlfield tag="001">5006509884</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073839.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2021 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030657710</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030657703</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006509884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6509884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1240210729</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC787.P3</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">ühwirth, Rudolf.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">{copy}2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (208 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Particle Acceleration and Detection Series</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Scope -- Content -- Audience -- Acknowledgements -- A Note on the References -- Typesetting and Notation -- Contents -- List of Figures -- List of Tables -- Part I Introduction -- 1 Tracking Detectors -- 1.1 Introduction -- 1.2 Gaseous Tracking Detectors -- 1.2.1 Multi-wire Proportional Chamber -- 1.2.2 Planar Drift Chamber -- 1.2.3 Cylindrical Drift Chamber -- 1.2.4 Drift Tubes -- 1.2.5 Time Projection Chamber -- 1.2.6 Micro-pattern Gas Detectors -- 1.3 Semiconductor Tracking Detectors -- 1.3.1 Silicon Strip Sensors -- 1.3.2 Hybrid Pixel Sensors -- 1.3.3 Silicon Drift Sensors -- 1.4 Scintillating Fiber Trackers -- 1.5 Alignment -- 1.6 Tracking Systems -- 1.6.1 Detectors at the LHC -- 1.6.1.1 ALICE -- 1.6.1.2 ATLAS -- 1.6.1.3 CMS -- 1.6.1.4 LHCb -- 1.6.2 Belle II and CBM -- 1.6.2.1 Belle II -- 1.6.2.2 CBM -- References -- 2 Event Reconstruction -- 2.1 Trigger and Data Acquisition -- 2.1.1 General Remarks -- 2.1.2 The CMS Trigger System -- 2.1.3 The LHCb Trigger System -- 2.2 Track Reconstruction -- 2.3 Vertex Reconstruction -- 2.4 Physics Objects Reconstruction -- 2.4.1 Particle ID by Dedicated Detectors -- 2.4.2 Particle and Object ID by Tracking and Calorimetry -- References -- 3 Statistics and Numerical Methods -- 3.1 Function Minimization -- 3.1.1 Newton-Raphson Method -- 3.1.2 Descent Methods -- 3.1.2.1 Line Search -- 3.1.2.2 Steepest Descent -- 3.1.2.3 Quasi-Newton Methods -- 3.1.2.4 Conjugate Gradients -- 3.1.3 Gradient-Free Methods -- 3.2 Statistical Models and Estimation -- 3.2.1 Linear Regression Models -- 3.2.2 Nonlinear Regression Models -- 3.2.3 State Space Models -- 3.2.3.1 Linear State Space Models and the Kalman Filter -- 3.2.3.2 Nonlinear State Space Models and the Extended Kalman Filter -- 3.3 Clustering -- 3.3.1 Hierarchical Clustering -- 3.3.2 Partitional Clustering -- 3.3.3 Model-Based Clustering.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">References -- Part II Track Reconstruction -- 4 Track Models -- 4.1 The Equations of Motion -- 4.2 Track Parametrization -- 4.3 Track Propagation -- 4.3.1 Homogeneous Magnetic Fields -- 4.3.2 Inhomogeneous Magnetic Fields -- 4.3.2.1 Runge-Kutta Methods -- 4.3.2.2 Approximate Analytical Formula -- 4.4 Error Propagation -- 4.4.1 Homogeneous Magnetic Fields -- 4.4.1.1 Transformation from One Curvilinear Frame to Another -- 4.4.1.2 Transformations Between Curvilinear and Local Frames at a Fixed Point on the Particle Trajectory -- 4.4.1.3 Transformations Between Global Cartesian and Local Frames -- 4.4.2 Inhomogeneous Magnetic Fields -- 4.5 Material Effects -- 4.5.1 Multiple Scattering -- 4.5.1.1 The Distribution of the Scattering Angle -- 4.5.1.2 Multiple Scattering in Track Propagation -- 4.5.2 Energy Loss by Ionization -- 4.5.2.1 Mean Energy Loss -- 4.5.2.2 Ionization Energy Loss in Track Propagation -- 4.5.3 Energy Loss by Bremsstrahlung -- 4.5.3.1 Mean and Distribution of the Energy Loss -- 4.5.3.2 Approximation by Gaussian Mixtures -- References -- 5 Track Finding -- 5.1 Basic Techniques -- 5.1.1 Conformal Transformation -- 5.1.2 Hough Transform -- 5.1.3 Artificial Retina -- 5.1.4 Legendre Transform -- 5.1.5 Cellular Automaton -- 5.1.6 Neural Networks -- 5.1.6.1 Hopfield Network -- 5.1.6.2 Recurrent Neural Network -- 5.1.6.3 Graph Neural Network -- 5.1.7 Track Following and the Combinatorial Kalman Filter -- 5.1.8 Pattern Matching -- 5.2 Online Track Finding -- 5.2.1 CDF Vertex Trigger -- 5.2.2 ATLAS Fast Tracker -- 5.2.3 CMS Track Trigger -- 5.2.3.1 Time Multiplexing -- 5.2.3.2 Pattern Matching -- 5.3 Candidate Selection -- References -- 6 Track Fitting -- 6.1 Least-Squares Fitting -- 6.1.1 Least-Squares Regression -- 6.1.2 Extended Kalman Filter -- 6.1.3 Regression with Breakpoints -- 6.1.4 General Broken Lines -- 6.1.5 Triplet Fit.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.1.6 Fast Track Fit by Affine Transformation -- 6.2 Robust and Adaptive Fitting -- 6.2.1 Robust Regression -- 6.2.2 Deterministic Annealing Filter -- 6.2.3 Gaussian-Sum Filter -- 6.3 Linear Approaches to Circle and Helix Fitting -- 6.3.1 Conformal Mapping Method -- 6.3.2 Chernov and Ososkov's Method -- 6.3.3 Karimäki's Method -- 6.3.4 Riemann Fit -- 6.3.5 Helix Fitting -- 6.4 Track Quality -- 6.4.1 Testing the Track Hypothesis -- 6.4.2 Detection of Outliers -- 6.4.3 Kink Finding -- References -- Part III Vertex Reconstruction -- 7 Vertex Finding -- 7.1 Introduction -- 7.2 Primary Vertex Finding in 1D -- 7.2.1 Divisive Clustering -- 7.2.2 Model-Based Clustering -- 7.2.3 EM Algorithm with Deterministic Annealing -- 7.2.4 Clustering by Deterministic Annealing -- 7.3 Primary Vertex Finding in 3D -- 7.3.1 Preclustering -- 7.3.2 Greedy Clustering -- 7.3.3 Iterated Estimators -- 7.3.4 Topological Vertex Finder -- 7.3.5 Medical Imaging Vertexer -- References -- 8 Vertex Fitting -- 8.1 Least-Squares Fitting -- 8.1.1 Straight Tracks -- 8.1.1.1 Exact Fit -- 8.1.1.2 Simplified Fit -- 8.1.2 Curved Tracks -- 8.1.2.1 Nonlinear Regression -- 8.1.2.2 Extended Kalman Filter -- 8.1.2.3 Fit with Perigee Parameters -- 8.2 Robust and Adaptive Vertex Fitting -- 8.2.1 Vertex Fit with M-Estimator -- 8.2.2 Adaptive Vertex Fit with Annealing -- 8.2.3 Vertex Quality -- 8.3 Kinematic Fit -- References -- 9 Secondary Vertex Reconstruction -- 9.1 Introduction -- 9.2 Decays of Short-Lived Particles -- 9.3 Decays of Long-Lived Particles -- 9.4 Photon Conversions -- 9.5 Hadronic Interactions -- References -- Part IV Case Studies -- 10 LHC Experiments -- 10.1 ALICE -- 10.2 ATLAS -- 10.3 CMS -- 10.4 LHCb -- References -- 11 Belle II and CBM -- 11.1 Belle II -- 11.2 CBM -- References -- A Jacobians of the Parameter Transformations -- Transformation from One Curvilinear Frame to Another.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Transformations Between a Local Frame and the Curvilinear Frame -- Transformations Between the Intermediate Cartesian Frame and the Local Frame -- B Regularization of the Kinematic Fit -- Reference -- C Software -- FairRoot -- ACTS: A Common Tracking Software -- GBL: General Broken Lines -- GENFIT -- RAVE -- References -- Glossary and Abbreviations -- Index.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Strandlie, Are.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">ühwirth, Rudolf</subfield><subfield code="t">Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors</subfield><subfield code="d">Cham : Springer International Publishing AG,c2021</subfield><subfield code="z">9783030657703</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Particle Acceleration and Detection Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6509884</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>