Brain and Human Body Modeling 2020 : : Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative® 2019 Meeting.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2020.
{copy}2021.
Year of Publication:2020
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (395 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006422897
ctrlnum (MiAaPQ)5006422897
(Au-PeEL)EBL6422897
(OCoLC)1203556333
collection bib_alma
record_format marc
spelling Makarov, Sergey N.
Brain and Human Body Modeling 2020 : Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative® 2019 Meeting.
1st ed.
Cham : Springer International Publishing AG, 2020.
{copy}2021.
1 online resource (395 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Foreword -- Contents -- Part I: Tumor Treating Fields -- Tumor-Treating Fields at EMBC 2019: A Roadmap to Developing a Framework for TTFields Dosimetry and Treatment Planning -- 1 Introduction -- 2 An Outline for TTFields Dosimetry and Treatment Planning -- 3 TTFields Dosimetry -- 4 Patient-Specific Model Creation -- 5 Advanced Imaging for Monitoring Response to Therapy -- 6 Discussion and Conclusions -- References -- How Do Tumor-Treating Fields Work? -- 1 Introduction -- 1.1 TTFields Affect Large, Polar Molecules -- 1.2 The Need for a ``Complete ́́TTFields Theory -- 2 Empirical Clues to TTFields MoA -- 2.1 TTFields Only Kill Fast-Dividing Cells -- 2.2 TTFields Require 2-4 V/cm Field Strength -- 2.3 TTFields Are Frequency-Sensitive and Effective Only in the 100-300 KHz Range -- 2.4 TTFields Are Highly Directional -- 2.5 TTFields Have Their Strongest Effect in Prophase and Metaphase -- 2.6 TTFields Increase Free Tubulin and Decrease Polymerized Tubulin in the Mitotic Spindle Region -- 3 Candidate Mechanisms of Action (MoA) -- 3.1 Dielectrophoretic (DEP) Effects -- 3.2 Microtubule Effects -- 3.3 Septin Effects -- 3.4 Is Intrinsic Apoptosis the Key Signaling Pathway Triggered by TTFields? -- 4 Conclusion -- References -- A Thermal Study of Tumor-Treating Fields for Glioblastoma Therapy -- 1 Introduction -- 1.1 Electromagnetic Radiation and Matter -- 1.2 Tumor-Treating Fields -- 1.3 The Optune Device -- 2 Methods -- 2.1 The Realistic Human Head Model -- 2.2 Heat Transfer in TTFields: Relevant Mechanisms -- 2.2.1 Conduction -- 2.2.2 Convection -- 2.2.3 Radiation -- 2.2.4 Sweat -- 2.2.5 Metabolism -- 2.2.6 Blood Perfusion -- 2.2.7 Joule Heating -- 2.3 Heat Transfer in TTFields: Pennes ́Equation -- 2.4 Simulations ́Conditions -- 3 Results -- 3.1 Duty Cycle and Effective Electric Field at the Tumor -- 3.2 Improving the Duty Cycle.
3.3 The Effect of Sweat -- 3.4 Temperature Increases -- 3.5 Prediction of the Thermal Impact -- 3.6 Continuous Versus Intermittent Application of the Fields -- 4 Limitations and Future Work -- References -- Improving Tumor-Treating Fields with Skull Remodeling Surgery, Surgery Planning, and Treatment Evaluation with Finite Element ... -- 1 Introduction -- 2 Glioblastoma -- 3 Tumor Treating Fields -- 4 TTFields Dosimetry -- 5 Skull Remodeling Surgery and the Utility of FE Modeling -- 6 The Aim and Motivation of Field Modeling in SR-Surgery Planning and Evaluation -- 7 Physical Basis of the Field Calculations -- 8 Creating the Head Models -- 9 Placement of TTField Transducer Arrays -- 10 Boundary Conditions and Tissue Conductivities -- 11 SR-Surgery in the OptimalTTF-1 Trial -- 12 Conclusion -- References -- Part II: Non-invasive Neurostimulation - Brain -- A Computational Parcellated Brain Model for Electric Field Analysis in Transcranial Direct Current Stimulation -- 1 Introduction -- 2 Relation Between EF Magnitude and Orientation and tDCS-Physiological Effects -- 3 A Computational Parcellated Brain Model in tDCS -- 3.1 Head Anatomy -- 3.2 Cortex Parcellation -- 3.3 tDCS Electrode Montages -- 3.4 The Physics of tDCS -- 3.5 FEM Calculation -- 4 Results -- 4.1 Tangential and Normal EF Distribution Through the Cortex -- 4.2 Mean and Peak Tangential and Normal EF Values over Different Cortical Areas -- 5 Summary and Discussion -- 6 Conclusion -- References -- Computational Models of Brain Stimulation with Tractography Analysis -- 1 Introduction -- 2 Methods -- 2.1 Image Preprocessing -- 2.2 White Matter Fibre Tractography -- 2.2.1 Image Segmentation -- 2.2.2 Fibre Orientation Distribution -- 2.2.3 Anatomically Constrained Tractography -- 2.2.4 Post-Processing -- 2.3 Finite Element Analysis of ECT Brain Stimulation.
2.3.1 Finite Element Model Reconstruction -- 2.3.2 Tissue Conductivities -- 2.3.3 White Matter Conductivity Anisotropy -- 2.3.4 ECT Brain Stimulation Settings -- 2.4 Model Combination -- 3 Results -- 3.1 White Matter Fibre Tractography Model -- 3.2 Electric Field and Activating Function for Three White Matter Conductivity Settings -- 3.3 White Matter Activation -- 4 Discussion -- References -- Personalization of Multi-electrode Setups in tCS/tES: Methods and Advantages -- 1 Introduction -- 1.1 Biophysical Aspects of tCS -- 2 Methods -- 2.1 Subjects -- 2.2 Head Model Generation -- 2.3 Montage Optimization Algorithm -- 2.4 Studies Performed -- 3 Results -- 3.1 Study A: Effect of Target Size -- 3.2 Study B: Tissue Conductivity Values -- 3.3 Study C: Intersubject Variability -- 4 Discussion -- 4.1 Interplay of Target Size, Cortical Geometry, and Optimization Constraints -- 4.2 Influence of Skull Conductivity -- 4.3 Montage Optimization and Intersubject Variability -- 4.4 Study Limitations -- 4.5 Consequences for Protocol Design -- References -- Part III: Non-invasive Neurostimulation - Spinal Cord and Peripheral Nervous System -- Modelling Studies of Non-invasive Electric and Magnetic Stimulation of the Spinal Cord -- 1 Relevance of Modelling Studies in Non-invasive Spinal Stimulation -- 2 Creating a Realistic Human Volume Conductor Model -- 3 Electric Field Calculation in Non-invasive Spinal Stimulation (NISS) -- 3.1 Electrode Model and Stimulation Parameters in tsDCS -- 3.2 Coil Model and Stimulation Parameters in tsMS -- 4 Main Characteristics of the Electric Field in NISS -- 4.1 Predictions in tsDCS -- 4.2 Predictions in tsMS -- 4.3 Implications of Modelling Findings in Clinical Applications of NISS -- 5 What Lies Ahead in Non-invasive Spinal Stimulation Modelling Studies -- References.
A Miniaturized Ultra-Focal Magnetic Stimulator and Its Preliminary Application to the Peripheral Nervous System -- 1 Introduction -- 2 Models and Methods -- 2.1 μCoil Modeling -- 2.2 Modeling Peripheral Nerve Stimulation: Titration Analysis -- 3 Results -- 3.1 Magnetic Field Generated by the μCoils -- 3.2 Electric Field Induced by the μCoils -- 3.3 Variation of the Peripheral Nerve Stimulation Threshold -- 4 Discussion and Conclusion -- References -- Part IV: Modeling of Neurophysiological Recordings -- Combining Noninvasive Electromagnetic and Hemodynamic Measures of Human Brain Activity -- 1 Introduction -- 2 Methods -- 2.1 Minimum-Norm Estimates -- 2.2 Example: MNE Analysis and the Effect of fMRI Weighting -- 3 Discussion -- 3.1 Developments of the fMRI-Weighted MNE -- 3.2 Experimental Design, Model Comparison and Validation, and Neurovascular Coupling Models -- 3.3 Neurovascular Coupling: The Physiological Bases of Integrating fMRI and MEG Source Modeling -- References -- Multiscale Modeling of EEG/MEG Response of a Compact Cluster of Tightly Spaced Pyramidal Neocortical Neurons -- 1 Introduction -- 2 Materials and Methods -- 2.1 Gyrus Cluster Construction and Analysis -- 2.2 Sulcus Cluster Construction and Analysis -- 2.3 Modeling Algorithm -- 3 Results -- 3.1 Gyrus (Nearly Horizontal) Cluster -- 3.2 Sulcus (Predominantly Vertical) Cluster -- 3.3 Quantitative Error Measures -- 4 Conclusions -- References -- Part V: Neural Circuits. Connectome -- Robustness in Neural Circuits -- 1 Introduction: Stability and Resilience - ``Robustness ́́-- 2 Methods -- 2.1 Node Parameters at Several Systems Levels Granularity -- 2.2 Neuron Cell Parameters -- 2.2.1 Dynamic Adjustment of Input Amplitude -- 2.3 Simulation Duration, Time Step, and Calculation of Firing Rates -- 2.4 Definition of ``Robustness ́́via Coefficient of Variance (CV).
2.5 Definition of ``Robustness ́́via an Adapted Lyapunov Exponent -- 2.6 Cumulative Firing Rate vs Momentary Firing Rate -- 2.7 Limitations -- 3 Results -- 3.1 Sample Time Course of Firing Rate of Two Population-Group Configurations -- 3.1.1 Plots of Firing Rate of All Sample Points vs Baseline Parameters -- 3.1.2 Robustness vs Number of Elements as Measured by Coefficient of Variance (CV) -- 3.1.3 Robustness vs Number of Elements as Measured by Lyapunov Exponent (LE) -- 3.1.4 Robustness vs Number of Elements as Measured by Cumulative Firing Rate (CFR) -- 4 Discussion -- 4.1 Key Results -- 4.2 Robustness and Degeneracy in Biological Systems -- 4.3 Robustness and Degeneracy in Functional Connectivity Brain Networks -- 4.4 Inadvertent Modeling Error Due to Scaling -- 5 Conclusion -- References -- Insights from Computational Modelling: Selective Stimulation of Retinal Ganglion Cells -- 1 Introduction -- 2 Materials and Methods -- 2.1 Computational Model of ON and OFF RGC Clusters -- 2.2 ON and OFF Layer Simulation -- 2.3 Extracellular Electrical Stimulation and Electrode Settings -- 3 Results -- 3.1 Differential Activation of Individual ON and OFF RGCs Using a Large HFS Parameter Space -- 3.2 Simulating Population-Based RGC Activity Under Clinically Relevant Conditions -- 4 Discussion and Conclusion -- References -- Functional Requirements of Small- and Large-Scale Neural Circuitry Connectome Models -- 1 Introduction -- 2 Goals and Means -- 2.1 Electroceuticals and Neuromodulation -- 2.2 Benefits of Numerical Modeling -- 2.3 The Role of Simple Versus Complex Models -- 2.4 Ockhamś Razor Drives All Modeling -- 2.5 Capturing the Required Level of Detail -- 2.6 Which Neural Circuitry Software? -- 2.7 Initial Conditions -- 2.8 Calibration and Validation -- 3 The Functional Requirements -- 4 Conclusion -- References.
Part VI: High-Frequency and Radiofrequency Modeling.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Noetscher, Gregory M.
Nummenmaa, Aapo.
Print version: Makarov, Sergey N. Brain and Human Body Modeling 2020 Cham : Springer International Publishing AG,c2020 9783030456221
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422897 Click to View
language English
format eBook
author Makarov, Sergey N.
spellingShingle Makarov, Sergey N.
Brain and Human Body Modeling 2020 : Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative® 2019 Meeting.
Intro -- Foreword -- Contents -- Part I: Tumor Treating Fields -- Tumor-Treating Fields at EMBC 2019: A Roadmap to Developing a Framework for TTFields Dosimetry and Treatment Planning -- 1 Introduction -- 2 An Outline for TTFields Dosimetry and Treatment Planning -- 3 TTFields Dosimetry -- 4 Patient-Specific Model Creation -- 5 Advanced Imaging for Monitoring Response to Therapy -- 6 Discussion and Conclusions -- References -- How Do Tumor-Treating Fields Work? -- 1 Introduction -- 1.1 TTFields Affect Large, Polar Molecules -- 1.2 The Need for a ``Complete ́́TTFields Theory -- 2 Empirical Clues to TTFields MoA -- 2.1 TTFields Only Kill Fast-Dividing Cells -- 2.2 TTFields Require 2-4 V/cm Field Strength -- 2.3 TTFields Are Frequency-Sensitive and Effective Only in the 100-300 KHz Range -- 2.4 TTFields Are Highly Directional -- 2.5 TTFields Have Their Strongest Effect in Prophase and Metaphase -- 2.6 TTFields Increase Free Tubulin and Decrease Polymerized Tubulin in the Mitotic Spindle Region -- 3 Candidate Mechanisms of Action (MoA) -- 3.1 Dielectrophoretic (DEP) Effects -- 3.2 Microtubule Effects -- 3.3 Septin Effects -- 3.4 Is Intrinsic Apoptosis the Key Signaling Pathway Triggered by TTFields? -- 4 Conclusion -- References -- A Thermal Study of Tumor-Treating Fields for Glioblastoma Therapy -- 1 Introduction -- 1.1 Electromagnetic Radiation and Matter -- 1.2 Tumor-Treating Fields -- 1.3 The Optune Device -- 2 Methods -- 2.1 The Realistic Human Head Model -- 2.2 Heat Transfer in TTFields: Relevant Mechanisms -- 2.2.1 Conduction -- 2.2.2 Convection -- 2.2.3 Radiation -- 2.2.4 Sweat -- 2.2.5 Metabolism -- 2.2.6 Blood Perfusion -- 2.2.7 Joule Heating -- 2.3 Heat Transfer in TTFields: Pennes ́Equation -- 2.4 Simulations ́Conditions -- 3 Results -- 3.1 Duty Cycle and Effective Electric Field at the Tumor -- 3.2 Improving the Duty Cycle.
3.3 The Effect of Sweat -- 3.4 Temperature Increases -- 3.5 Prediction of the Thermal Impact -- 3.6 Continuous Versus Intermittent Application of the Fields -- 4 Limitations and Future Work -- References -- Improving Tumor-Treating Fields with Skull Remodeling Surgery, Surgery Planning, and Treatment Evaluation with Finite Element ... -- 1 Introduction -- 2 Glioblastoma -- 3 Tumor Treating Fields -- 4 TTFields Dosimetry -- 5 Skull Remodeling Surgery and the Utility of FE Modeling -- 6 The Aim and Motivation of Field Modeling in SR-Surgery Planning and Evaluation -- 7 Physical Basis of the Field Calculations -- 8 Creating the Head Models -- 9 Placement of TTField Transducer Arrays -- 10 Boundary Conditions and Tissue Conductivities -- 11 SR-Surgery in the OptimalTTF-1 Trial -- 12 Conclusion -- References -- Part II: Non-invasive Neurostimulation - Brain -- A Computational Parcellated Brain Model for Electric Field Analysis in Transcranial Direct Current Stimulation -- 1 Introduction -- 2 Relation Between EF Magnitude and Orientation and tDCS-Physiological Effects -- 3 A Computational Parcellated Brain Model in tDCS -- 3.1 Head Anatomy -- 3.2 Cortex Parcellation -- 3.3 tDCS Electrode Montages -- 3.4 The Physics of tDCS -- 3.5 FEM Calculation -- 4 Results -- 4.1 Tangential and Normal EF Distribution Through the Cortex -- 4.2 Mean and Peak Tangential and Normal EF Values over Different Cortical Areas -- 5 Summary and Discussion -- 6 Conclusion -- References -- Computational Models of Brain Stimulation with Tractography Analysis -- 1 Introduction -- 2 Methods -- 2.1 Image Preprocessing -- 2.2 White Matter Fibre Tractography -- 2.2.1 Image Segmentation -- 2.2.2 Fibre Orientation Distribution -- 2.2.3 Anatomically Constrained Tractography -- 2.2.4 Post-Processing -- 2.3 Finite Element Analysis of ECT Brain Stimulation.
2.3.1 Finite Element Model Reconstruction -- 2.3.2 Tissue Conductivities -- 2.3.3 White Matter Conductivity Anisotropy -- 2.3.4 ECT Brain Stimulation Settings -- 2.4 Model Combination -- 3 Results -- 3.1 White Matter Fibre Tractography Model -- 3.2 Electric Field and Activating Function for Three White Matter Conductivity Settings -- 3.3 White Matter Activation -- 4 Discussion -- References -- Personalization of Multi-electrode Setups in tCS/tES: Methods and Advantages -- 1 Introduction -- 1.1 Biophysical Aspects of tCS -- 2 Methods -- 2.1 Subjects -- 2.2 Head Model Generation -- 2.3 Montage Optimization Algorithm -- 2.4 Studies Performed -- 3 Results -- 3.1 Study A: Effect of Target Size -- 3.2 Study B: Tissue Conductivity Values -- 3.3 Study C: Intersubject Variability -- 4 Discussion -- 4.1 Interplay of Target Size, Cortical Geometry, and Optimization Constraints -- 4.2 Influence of Skull Conductivity -- 4.3 Montage Optimization and Intersubject Variability -- 4.4 Study Limitations -- 4.5 Consequences for Protocol Design -- References -- Part III: Non-invasive Neurostimulation - Spinal Cord and Peripheral Nervous System -- Modelling Studies of Non-invasive Electric and Magnetic Stimulation of the Spinal Cord -- 1 Relevance of Modelling Studies in Non-invasive Spinal Stimulation -- 2 Creating a Realistic Human Volume Conductor Model -- 3 Electric Field Calculation in Non-invasive Spinal Stimulation (NISS) -- 3.1 Electrode Model and Stimulation Parameters in tsDCS -- 3.2 Coil Model and Stimulation Parameters in tsMS -- 4 Main Characteristics of the Electric Field in NISS -- 4.1 Predictions in tsDCS -- 4.2 Predictions in tsMS -- 4.3 Implications of Modelling Findings in Clinical Applications of NISS -- 5 What Lies Ahead in Non-invasive Spinal Stimulation Modelling Studies -- References.
A Miniaturized Ultra-Focal Magnetic Stimulator and Its Preliminary Application to the Peripheral Nervous System -- 1 Introduction -- 2 Models and Methods -- 2.1 μCoil Modeling -- 2.2 Modeling Peripheral Nerve Stimulation: Titration Analysis -- 3 Results -- 3.1 Magnetic Field Generated by the μCoils -- 3.2 Electric Field Induced by the μCoils -- 3.3 Variation of the Peripheral Nerve Stimulation Threshold -- 4 Discussion and Conclusion -- References -- Part IV: Modeling of Neurophysiological Recordings -- Combining Noninvasive Electromagnetic and Hemodynamic Measures of Human Brain Activity -- 1 Introduction -- 2 Methods -- 2.1 Minimum-Norm Estimates -- 2.2 Example: MNE Analysis and the Effect of fMRI Weighting -- 3 Discussion -- 3.1 Developments of the fMRI-Weighted MNE -- 3.2 Experimental Design, Model Comparison and Validation, and Neurovascular Coupling Models -- 3.3 Neurovascular Coupling: The Physiological Bases of Integrating fMRI and MEG Source Modeling -- References -- Multiscale Modeling of EEG/MEG Response of a Compact Cluster of Tightly Spaced Pyramidal Neocortical Neurons -- 1 Introduction -- 2 Materials and Methods -- 2.1 Gyrus Cluster Construction and Analysis -- 2.2 Sulcus Cluster Construction and Analysis -- 2.3 Modeling Algorithm -- 3 Results -- 3.1 Gyrus (Nearly Horizontal) Cluster -- 3.2 Sulcus (Predominantly Vertical) Cluster -- 3.3 Quantitative Error Measures -- 4 Conclusions -- References -- Part V: Neural Circuits. Connectome -- Robustness in Neural Circuits -- 1 Introduction: Stability and Resilience - ``Robustness ́́-- 2 Methods -- 2.1 Node Parameters at Several Systems Levels Granularity -- 2.2 Neuron Cell Parameters -- 2.2.1 Dynamic Adjustment of Input Amplitude -- 2.3 Simulation Duration, Time Step, and Calculation of Firing Rates -- 2.4 Definition of ``Robustness ́́via Coefficient of Variance (CV).
2.5 Definition of ``Robustness ́́via an Adapted Lyapunov Exponent -- 2.6 Cumulative Firing Rate vs Momentary Firing Rate -- 2.7 Limitations -- 3 Results -- 3.1 Sample Time Course of Firing Rate of Two Population-Group Configurations -- 3.1.1 Plots of Firing Rate of All Sample Points vs Baseline Parameters -- 3.1.2 Robustness vs Number of Elements as Measured by Coefficient of Variance (CV) -- 3.1.3 Robustness vs Number of Elements as Measured by Lyapunov Exponent (LE) -- 3.1.4 Robustness vs Number of Elements as Measured by Cumulative Firing Rate (CFR) -- 4 Discussion -- 4.1 Key Results -- 4.2 Robustness and Degeneracy in Biological Systems -- 4.3 Robustness and Degeneracy in Functional Connectivity Brain Networks -- 4.4 Inadvertent Modeling Error Due to Scaling -- 5 Conclusion -- References -- Insights from Computational Modelling: Selective Stimulation of Retinal Ganglion Cells -- 1 Introduction -- 2 Materials and Methods -- 2.1 Computational Model of ON and OFF RGC Clusters -- 2.2 ON and OFF Layer Simulation -- 2.3 Extracellular Electrical Stimulation and Electrode Settings -- 3 Results -- 3.1 Differential Activation of Individual ON and OFF RGCs Using a Large HFS Parameter Space -- 3.2 Simulating Population-Based RGC Activity Under Clinically Relevant Conditions -- 4 Discussion and Conclusion -- References -- Functional Requirements of Small- and Large-Scale Neural Circuitry Connectome Models -- 1 Introduction -- 2 Goals and Means -- 2.1 Electroceuticals and Neuromodulation -- 2.2 Benefits of Numerical Modeling -- 2.3 The Role of Simple Versus Complex Models -- 2.4 Ockhamś Razor Drives All Modeling -- 2.5 Capturing the Required Level of Detail -- 2.6 Which Neural Circuitry Software? -- 2.7 Initial Conditions -- 2.8 Calibration and Validation -- 3 The Functional Requirements -- 4 Conclusion -- References.
Part VI: High-Frequency and Radiofrequency Modeling.
author_facet Makarov, Sergey N.
Noetscher, Gregory M.
Nummenmaa, Aapo.
author_variant s n m sn snm
author2 Noetscher, Gregory M.
Nummenmaa, Aapo.
author2_variant g m n gm gmn
a n an
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Makarov, Sergey N.
title Brain and Human Body Modeling 2020 : Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative® 2019 Meeting.
title_sub Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative® 2019 Meeting.
title_full Brain and Human Body Modeling 2020 : Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative® 2019 Meeting.
title_fullStr Brain and Human Body Modeling 2020 : Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative® 2019 Meeting.
title_full_unstemmed Brain and Human Body Modeling 2020 : Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative® 2019 Meeting.
title_auth Brain and Human Body Modeling 2020 : Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative® 2019 Meeting.
title_new Brain and Human Body Modeling 2020 :
title_sort brain and human body modeling 2020 : computational human models presented at embc 2019 and the brain initiative® 2019 meeting.
publisher Springer International Publishing AG,
publishDate 2020
physical 1 online resource (395 pages)
edition 1st ed.
contents Intro -- Foreword -- Contents -- Part I: Tumor Treating Fields -- Tumor-Treating Fields at EMBC 2019: A Roadmap to Developing a Framework for TTFields Dosimetry and Treatment Planning -- 1 Introduction -- 2 An Outline for TTFields Dosimetry and Treatment Planning -- 3 TTFields Dosimetry -- 4 Patient-Specific Model Creation -- 5 Advanced Imaging for Monitoring Response to Therapy -- 6 Discussion and Conclusions -- References -- How Do Tumor-Treating Fields Work? -- 1 Introduction -- 1.1 TTFields Affect Large, Polar Molecules -- 1.2 The Need for a ``Complete ́́TTFields Theory -- 2 Empirical Clues to TTFields MoA -- 2.1 TTFields Only Kill Fast-Dividing Cells -- 2.2 TTFields Require 2-4 V/cm Field Strength -- 2.3 TTFields Are Frequency-Sensitive and Effective Only in the 100-300 KHz Range -- 2.4 TTFields Are Highly Directional -- 2.5 TTFields Have Their Strongest Effect in Prophase and Metaphase -- 2.6 TTFields Increase Free Tubulin and Decrease Polymerized Tubulin in the Mitotic Spindle Region -- 3 Candidate Mechanisms of Action (MoA) -- 3.1 Dielectrophoretic (DEP) Effects -- 3.2 Microtubule Effects -- 3.3 Septin Effects -- 3.4 Is Intrinsic Apoptosis the Key Signaling Pathway Triggered by TTFields? -- 4 Conclusion -- References -- A Thermal Study of Tumor-Treating Fields for Glioblastoma Therapy -- 1 Introduction -- 1.1 Electromagnetic Radiation and Matter -- 1.2 Tumor-Treating Fields -- 1.3 The Optune Device -- 2 Methods -- 2.1 The Realistic Human Head Model -- 2.2 Heat Transfer in TTFields: Relevant Mechanisms -- 2.2.1 Conduction -- 2.2.2 Convection -- 2.2.3 Radiation -- 2.2.4 Sweat -- 2.2.5 Metabolism -- 2.2.6 Blood Perfusion -- 2.2.7 Joule Heating -- 2.3 Heat Transfer in TTFields: Pennes ́Equation -- 2.4 Simulations ́Conditions -- 3 Results -- 3.1 Duty Cycle and Effective Electric Field at the Tumor -- 3.2 Improving the Duty Cycle.
3.3 The Effect of Sweat -- 3.4 Temperature Increases -- 3.5 Prediction of the Thermal Impact -- 3.6 Continuous Versus Intermittent Application of the Fields -- 4 Limitations and Future Work -- References -- Improving Tumor-Treating Fields with Skull Remodeling Surgery, Surgery Planning, and Treatment Evaluation with Finite Element ... -- 1 Introduction -- 2 Glioblastoma -- 3 Tumor Treating Fields -- 4 TTFields Dosimetry -- 5 Skull Remodeling Surgery and the Utility of FE Modeling -- 6 The Aim and Motivation of Field Modeling in SR-Surgery Planning and Evaluation -- 7 Physical Basis of the Field Calculations -- 8 Creating the Head Models -- 9 Placement of TTField Transducer Arrays -- 10 Boundary Conditions and Tissue Conductivities -- 11 SR-Surgery in the OptimalTTF-1 Trial -- 12 Conclusion -- References -- Part II: Non-invasive Neurostimulation - Brain -- A Computational Parcellated Brain Model for Electric Field Analysis in Transcranial Direct Current Stimulation -- 1 Introduction -- 2 Relation Between EF Magnitude and Orientation and tDCS-Physiological Effects -- 3 A Computational Parcellated Brain Model in tDCS -- 3.1 Head Anatomy -- 3.2 Cortex Parcellation -- 3.3 tDCS Electrode Montages -- 3.4 The Physics of tDCS -- 3.5 FEM Calculation -- 4 Results -- 4.1 Tangential and Normal EF Distribution Through the Cortex -- 4.2 Mean and Peak Tangential and Normal EF Values over Different Cortical Areas -- 5 Summary and Discussion -- 6 Conclusion -- References -- Computational Models of Brain Stimulation with Tractography Analysis -- 1 Introduction -- 2 Methods -- 2.1 Image Preprocessing -- 2.2 White Matter Fibre Tractography -- 2.2.1 Image Segmentation -- 2.2.2 Fibre Orientation Distribution -- 2.2.3 Anatomically Constrained Tractography -- 2.2.4 Post-Processing -- 2.3 Finite Element Analysis of ECT Brain Stimulation.
2.3.1 Finite Element Model Reconstruction -- 2.3.2 Tissue Conductivities -- 2.3.3 White Matter Conductivity Anisotropy -- 2.3.4 ECT Brain Stimulation Settings -- 2.4 Model Combination -- 3 Results -- 3.1 White Matter Fibre Tractography Model -- 3.2 Electric Field and Activating Function for Three White Matter Conductivity Settings -- 3.3 White Matter Activation -- 4 Discussion -- References -- Personalization of Multi-electrode Setups in tCS/tES: Methods and Advantages -- 1 Introduction -- 1.1 Biophysical Aspects of tCS -- 2 Methods -- 2.1 Subjects -- 2.2 Head Model Generation -- 2.3 Montage Optimization Algorithm -- 2.4 Studies Performed -- 3 Results -- 3.1 Study A: Effect of Target Size -- 3.2 Study B: Tissue Conductivity Values -- 3.3 Study C: Intersubject Variability -- 4 Discussion -- 4.1 Interplay of Target Size, Cortical Geometry, and Optimization Constraints -- 4.2 Influence of Skull Conductivity -- 4.3 Montage Optimization and Intersubject Variability -- 4.4 Study Limitations -- 4.5 Consequences for Protocol Design -- References -- Part III: Non-invasive Neurostimulation - Spinal Cord and Peripheral Nervous System -- Modelling Studies of Non-invasive Electric and Magnetic Stimulation of the Spinal Cord -- 1 Relevance of Modelling Studies in Non-invasive Spinal Stimulation -- 2 Creating a Realistic Human Volume Conductor Model -- 3 Electric Field Calculation in Non-invasive Spinal Stimulation (NISS) -- 3.1 Electrode Model and Stimulation Parameters in tsDCS -- 3.2 Coil Model and Stimulation Parameters in tsMS -- 4 Main Characteristics of the Electric Field in NISS -- 4.1 Predictions in tsDCS -- 4.2 Predictions in tsMS -- 4.3 Implications of Modelling Findings in Clinical Applications of NISS -- 5 What Lies Ahead in Non-invasive Spinal Stimulation Modelling Studies -- References.
A Miniaturized Ultra-Focal Magnetic Stimulator and Its Preliminary Application to the Peripheral Nervous System -- 1 Introduction -- 2 Models and Methods -- 2.1 μCoil Modeling -- 2.2 Modeling Peripheral Nerve Stimulation: Titration Analysis -- 3 Results -- 3.1 Magnetic Field Generated by the μCoils -- 3.2 Electric Field Induced by the μCoils -- 3.3 Variation of the Peripheral Nerve Stimulation Threshold -- 4 Discussion and Conclusion -- References -- Part IV: Modeling of Neurophysiological Recordings -- Combining Noninvasive Electromagnetic and Hemodynamic Measures of Human Brain Activity -- 1 Introduction -- 2 Methods -- 2.1 Minimum-Norm Estimates -- 2.2 Example: MNE Analysis and the Effect of fMRI Weighting -- 3 Discussion -- 3.1 Developments of the fMRI-Weighted MNE -- 3.2 Experimental Design, Model Comparison and Validation, and Neurovascular Coupling Models -- 3.3 Neurovascular Coupling: The Physiological Bases of Integrating fMRI and MEG Source Modeling -- References -- Multiscale Modeling of EEG/MEG Response of a Compact Cluster of Tightly Spaced Pyramidal Neocortical Neurons -- 1 Introduction -- 2 Materials and Methods -- 2.1 Gyrus Cluster Construction and Analysis -- 2.2 Sulcus Cluster Construction and Analysis -- 2.3 Modeling Algorithm -- 3 Results -- 3.1 Gyrus (Nearly Horizontal) Cluster -- 3.2 Sulcus (Predominantly Vertical) Cluster -- 3.3 Quantitative Error Measures -- 4 Conclusions -- References -- Part V: Neural Circuits. Connectome -- Robustness in Neural Circuits -- 1 Introduction: Stability and Resilience - ``Robustness ́́-- 2 Methods -- 2.1 Node Parameters at Several Systems Levels Granularity -- 2.2 Neuron Cell Parameters -- 2.2.1 Dynamic Adjustment of Input Amplitude -- 2.3 Simulation Duration, Time Step, and Calculation of Firing Rates -- 2.4 Definition of ``Robustness ́́via Coefficient of Variance (CV).
2.5 Definition of ``Robustness ́́via an Adapted Lyapunov Exponent -- 2.6 Cumulative Firing Rate vs Momentary Firing Rate -- 2.7 Limitations -- 3 Results -- 3.1 Sample Time Course of Firing Rate of Two Population-Group Configurations -- 3.1.1 Plots of Firing Rate of All Sample Points vs Baseline Parameters -- 3.1.2 Robustness vs Number of Elements as Measured by Coefficient of Variance (CV) -- 3.1.3 Robustness vs Number of Elements as Measured by Lyapunov Exponent (LE) -- 3.1.4 Robustness vs Number of Elements as Measured by Cumulative Firing Rate (CFR) -- 4 Discussion -- 4.1 Key Results -- 4.2 Robustness and Degeneracy in Biological Systems -- 4.3 Robustness and Degeneracy in Functional Connectivity Brain Networks -- 4.4 Inadvertent Modeling Error Due to Scaling -- 5 Conclusion -- References -- Insights from Computational Modelling: Selective Stimulation of Retinal Ganglion Cells -- 1 Introduction -- 2 Materials and Methods -- 2.1 Computational Model of ON and OFF RGC Clusters -- 2.2 ON and OFF Layer Simulation -- 2.3 Extracellular Electrical Stimulation and Electrode Settings -- 3 Results -- 3.1 Differential Activation of Individual ON and OFF RGCs Using a Large HFS Parameter Space -- 3.2 Simulating Population-Based RGC Activity Under Clinically Relevant Conditions -- 4 Discussion and Conclusion -- References -- Functional Requirements of Small- and Large-Scale Neural Circuitry Connectome Models -- 1 Introduction -- 2 Goals and Means -- 2.1 Electroceuticals and Neuromodulation -- 2.2 Benefits of Numerical Modeling -- 2.3 The Role of Simple Versus Complex Models -- 2.4 Ockhamś Razor Drives All Modeling -- 2.5 Capturing the Required Level of Detail -- 2.6 Which Neural Circuitry Software? -- 2.7 Initial Conditions -- 2.8 Calibration and Validation -- 3 The Functional Requirements -- 4 Conclusion -- References.
Part VI: High-Frequency and Radiofrequency Modeling.
isbn 9783030456238
9783030456221
callnumber-first R - Medicine
callnumber-subject R - General Medicine
callnumber-label R856-857
callnumber-sort R 3856 3857
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422897
illustrated Not Illustrated
oclc_num 1203556333
work_keys_str_mv AT makarovsergeyn brainandhumanbodymodeling2020computationalhumanmodelspresentedatembc2019andthebraininitiative2019meeting
AT noetschergregorym brainandhumanbodymodeling2020computationalhumanmodelspresentedatembc2019andthebraininitiative2019meeting
AT nummenmaaaapo brainandhumanbodymodeling2020computationalhumanmodelspresentedatembc2019andthebraininitiative2019meeting
status_str n
ids_txt_mv (MiAaPQ)5006422897
(Au-PeEL)EBL6422897
(OCoLC)1203556333
carrierType_str_mv cr
is_hierarchy_title Brain and Human Body Modeling 2020 : Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative® 2019 Meeting.
author2_original_writing_str_mv noLinkedField
noLinkedField
_version_ 1792331059870826496
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11004nam a22004573i 4500</leader><controlfield tag="001">5006422897</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073838.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2020 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030456238</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030456221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006422897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6422897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1203556333</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">R856-857</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Makarov, Sergey N.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Brain and Human Body Modeling 2020 :</subfield><subfield code="b">Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative® 2019 Meeting.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2020.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">{copy}2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (395 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Foreword -- Contents -- Part I: Tumor Treating Fields -- Tumor-Treating Fields at EMBC 2019: A Roadmap to Developing a Framework for TTFields Dosimetry and Treatment Planning -- 1 Introduction -- 2 An Outline for TTFields Dosimetry and Treatment Planning -- 3 TTFields Dosimetry -- 4 Patient-Specific Model Creation -- 5 Advanced Imaging for Monitoring Response to Therapy -- 6 Discussion and Conclusions -- References -- How Do Tumor-Treating Fields Work? -- 1 Introduction -- 1.1 TTFields Affect Large, Polar Molecules -- 1.2 The Need for a ``Complete ́́TTFields Theory -- 2 Empirical Clues to TTFields MoA -- 2.1 TTFields Only Kill Fast-Dividing Cells -- 2.2 TTFields Require 2-4 V/cm Field Strength -- 2.3 TTFields Are Frequency-Sensitive and Effective Only in the 100-300 KHz Range -- 2.4 TTFields Are Highly Directional -- 2.5 TTFields Have Their Strongest Effect in Prophase and Metaphase -- 2.6 TTFields Increase Free Tubulin and Decrease Polymerized Tubulin in the Mitotic Spindle Region -- 3 Candidate Mechanisms of Action (MoA) -- 3.1 Dielectrophoretic (DEP) Effects -- 3.2 Microtubule Effects -- 3.3 Septin Effects -- 3.4 Is Intrinsic Apoptosis the Key Signaling Pathway Triggered by TTFields? -- 4 Conclusion -- References -- A Thermal Study of Tumor-Treating Fields for Glioblastoma Therapy -- 1 Introduction -- 1.1 Electromagnetic Radiation and Matter -- 1.2 Tumor-Treating Fields -- 1.3 The Optune Device -- 2 Methods -- 2.1 The Realistic Human Head Model -- 2.2 Heat Transfer in TTFields: Relevant Mechanisms -- 2.2.1 Conduction -- 2.2.2 Convection -- 2.2.3 Radiation -- 2.2.4 Sweat -- 2.2.5 Metabolism -- 2.2.6 Blood Perfusion -- 2.2.7 Joule Heating -- 2.3 Heat Transfer in TTFields: Pennes ́Equation -- 2.4 Simulations ́Conditions -- 3 Results -- 3.1 Duty Cycle and Effective Electric Field at the Tumor -- 3.2 Improving the Duty Cycle.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3 The Effect of Sweat -- 3.4 Temperature Increases -- 3.5 Prediction of the Thermal Impact -- 3.6 Continuous Versus Intermittent Application of the Fields -- 4 Limitations and Future Work -- References -- Improving Tumor-Treating Fields with Skull Remodeling Surgery, Surgery Planning, and Treatment Evaluation with Finite Element ... -- 1 Introduction -- 2 Glioblastoma -- 3 Tumor Treating Fields -- 4 TTFields Dosimetry -- 5 Skull Remodeling Surgery and the Utility of FE Modeling -- 6 The Aim and Motivation of Field Modeling in SR-Surgery Planning and Evaluation -- 7 Physical Basis of the Field Calculations -- 8 Creating the Head Models -- 9 Placement of TTField Transducer Arrays -- 10 Boundary Conditions and Tissue Conductivities -- 11 SR-Surgery in the OptimalTTF-1 Trial -- 12 Conclusion -- References -- Part II: Non-invasive Neurostimulation - Brain -- A Computational Parcellated Brain Model for Electric Field Analysis in Transcranial Direct Current Stimulation -- 1 Introduction -- 2 Relation Between EF Magnitude and Orientation and tDCS-Physiological Effects -- 3 A Computational Parcellated Brain Model in tDCS -- 3.1 Head Anatomy -- 3.2 Cortex Parcellation -- 3.3 tDCS Electrode Montages -- 3.4 The Physics of tDCS -- 3.5 FEM Calculation -- 4 Results -- 4.1 Tangential and Normal EF Distribution Through the Cortex -- 4.2 Mean and Peak Tangential and Normal EF Values over Different Cortical Areas -- 5 Summary and Discussion -- 6 Conclusion -- References -- Computational Models of Brain Stimulation with Tractography Analysis -- 1 Introduction -- 2 Methods -- 2.1 Image Preprocessing -- 2.2 White Matter Fibre Tractography -- 2.2.1 Image Segmentation -- 2.2.2 Fibre Orientation Distribution -- 2.2.3 Anatomically Constrained Tractography -- 2.2.4 Post-Processing -- 2.3 Finite Element Analysis of ECT Brain Stimulation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3.1 Finite Element Model Reconstruction -- 2.3.2 Tissue Conductivities -- 2.3.3 White Matter Conductivity Anisotropy -- 2.3.4 ECT Brain Stimulation Settings -- 2.4 Model Combination -- 3 Results -- 3.1 White Matter Fibre Tractography Model -- 3.2 Electric Field and Activating Function for Three White Matter Conductivity Settings -- 3.3 White Matter Activation -- 4 Discussion -- References -- Personalization of Multi-electrode Setups in tCS/tES: Methods and Advantages -- 1 Introduction -- 1.1 Biophysical Aspects of tCS -- 2 Methods -- 2.1 Subjects -- 2.2 Head Model Generation -- 2.3 Montage Optimization Algorithm -- 2.4 Studies Performed -- 3 Results -- 3.1 Study A: Effect of Target Size -- 3.2 Study B: Tissue Conductivity Values -- 3.3 Study C: Intersubject Variability -- 4 Discussion -- 4.1 Interplay of Target Size, Cortical Geometry, and Optimization Constraints -- 4.2 Influence of Skull Conductivity -- 4.3 Montage Optimization and Intersubject Variability -- 4.4 Study Limitations -- 4.5 Consequences for Protocol Design -- References -- Part III: Non-invasive Neurostimulation - Spinal Cord and Peripheral Nervous System -- Modelling Studies of Non-invasive Electric and Magnetic Stimulation of the Spinal Cord -- 1 Relevance of Modelling Studies in Non-invasive Spinal Stimulation -- 2 Creating a Realistic Human Volume Conductor Model -- 3 Electric Field Calculation in Non-invasive Spinal Stimulation (NISS) -- 3.1 Electrode Model and Stimulation Parameters in tsDCS -- 3.2 Coil Model and Stimulation Parameters in tsMS -- 4 Main Characteristics of the Electric Field in NISS -- 4.1 Predictions in tsDCS -- 4.2 Predictions in tsMS -- 4.3 Implications of Modelling Findings in Clinical Applications of NISS -- 5 What Lies Ahead in Non-invasive Spinal Stimulation Modelling Studies -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">A Miniaturized Ultra-Focal Magnetic Stimulator and Its Preliminary Application to the Peripheral Nervous System -- 1 Introduction -- 2 Models and Methods -- 2.1 μCoil Modeling -- 2.2 Modeling Peripheral Nerve Stimulation: Titration Analysis -- 3 Results -- 3.1 Magnetic Field Generated by the μCoils -- 3.2 Electric Field Induced by the μCoils -- 3.3 Variation of the Peripheral Nerve Stimulation Threshold -- 4 Discussion and Conclusion -- References -- Part IV: Modeling of Neurophysiological Recordings -- Combining Noninvasive Electromagnetic and Hemodynamic Measures of Human Brain Activity -- 1 Introduction -- 2 Methods -- 2.1 Minimum-Norm Estimates -- 2.2 Example: MNE Analysis and the Effect of fMRI Weighting -- 3 Discussion -- 3.1 Developments of the fMRI-Weighted MNE -- 3.2 Experimental Design, Model Comparison and Validation, and Neurovascular Coupling Models -- 3.3 Neurovascular Coupling: The Physiological Bases of Integrating fMRI and MEG Source Modeling -- References -- Multiscale Modeling of EEG/MEG Response of a Compact Cluster of Tightly Spaced Pyramidal Neocortical Neurons -- 1 Introduction -- 2 Materials and Methods -- 2.1 Gyrus Cluster Construction and Analysis -- 2.2 Sulcus Cluster Construction and Analysis -- 2.3 Modeling Algorithm -- 3 Results -- 3.1 Gyrus (Nearly Horizontal) Cluster -- 3.2 Sulcus (Predominantly Vertical) Cluster -- 3.3 Quantitative Error Measures -- 4 Conclusions -- References -- Part V: Neural Circuits. Connectome -- Robustness in Neural Circuits -- 1 Introduction: Stability and Resilience - ``Robustness ́́-- 2 Methods -- 2.1 Node Parameters at Several Systems Levels Granularity -- 2.2 Neuron Cell Parameters -- 2.2.1 Dynamic Adjustment of Input Amplitude -- 2.3 Simulation Duration, Time Step, and Calculation of Firing Rates -- 2.4 Definition of ``Robustness ́́via Coefficient of Variance (CV).</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5 Definition of ``Robustness ́́via an Adapted Lyapunov Exponent -- 2.6 Cumulative Firing Rate vs Momentary Firing Rate -- 2.7 Limitations -- 3 Results -- 3.1 Sample Time Course of Firing Rate of Two Population-Group Configurations -- 3.1.1 Plots of Firing Rate of All Sample Points vs Baseline Parameters -- 3.1.2 Robustness vs Number of Elements as Measured by Coefficient of Variance (CV) -- 3.1.3 Robustness vs Number of Elements as Measured by Lyapunov Exponent (LE) -- 3.1.4 Robustness vs Number of Elements as Measured by Cumulative Firing Rate (CFR) -- 4 Discussion -- 4.1 Key Results -- 4.2 Robustness and Degeneracy in Biological Systems -- 4.3 Robustness and Degeneracy in Functional Connectivity Brain Networks -- 4.4 Inadvertent Modeling Error Due to Scaling -- 5 Conclusion -- References -- Insights from Computational Modelling: Selective Stimulation of Retinal Ganglion Cells -- 1 Introduction -- 2 Materials and Methods -- 2.1 Computational Model of ON and OFF RGC Clusters -- 2.2 ON and OFF Layer Simulation -- 2.3 Extracellular Electrical Stimulation and Electrode Settings -- 3 Results -- 3.1 Differential Activation of Individual ON and OFF RGCs Using a Large HFS Parameter Space -- 3.2 Simulating Population-Based RGC Activity Under Clinically Relevant Conditions -- 4 Discussion and Conclusion -- References -- Functional Requirements of Small- and Large-Scale Neural Circuitry Connectome Models -- 1 Introduction -- 2 Goals and Means -- 2.1 Electroceuticals and Neuromodulation -- 2.2 Benefits of Numerical Modeling -- 2.3 The Role of Simple Versus Complex Models -- 2.4 Ockhamś Razor Drives All Modeling -- 2.5 Capturing the Required Level of Detail -- 2.6 Which Neural Circuitry Software? -- 2.7 Initial Conditions -- 2.8 Calibration and Validation -- 3 The Functional Requirements -- 4 Conclusion -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Part VI: High-Frequency and Radiofrequency Modeling.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noetscher, Gregory M.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nummenmaa, Aapo.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Makarov, Sergey N.</subfield><subfield code="t">Brain and Human Body Modeling 2020</subfield><subfield code="d">Cham : Springer International Publishing AG,c2020</subfield><subfield code="z">9783030456221</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422897</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>