Perspectives on European Earthquake Engineering and Seismology : : Volume 1.

Saved in:
Bibliographic Details
Superior document:Geotechnical, Geological and Earthquake Engineering Series ; v.34
:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2014.
©2014.
Year of Publication:2014
Edition:1st ed.
Language:English
Series:Geotechnical, Geological and Earthquake Engineering Series
Online Access:
Physical Description:1 online resource (654 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006422780
ctrlnum (MiAaPQ)5006422780
(Au-PeEL)EBL6422780
(OCoLC)890933162
collection bib_alma
record_format marc
spelling Ansal, Atilla.
Perspectives on European Earthquake Engineering and Seismology : Volume 1.
1st ed.
Cham : Springer International Publishing AG, 2014.
©2014.
1 online resource (654 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Geotechnical, Geological and Earthquake Engineering Series ; v.34
Intro -- Preface -- Contents -- Chapter 1: The Full-Scale Laboratory: The Practice of Post-Earthquake Reconnaissance Missions and Their Contribution to Earthq... -- 1.1 Introduction -- 1.2 Early Field Investigations -- 1.3 Malletś Investigation of the 1857 Neapolitan Earthquake -- 1.4 UNESCO Field Missions 1962-1980 -- 1.4.1 The M=6.1 Skopje Earthquake of 26 July 1963 -- 1.4.2 The M=6.8 Varto-Üstükran Earthquake of 19 August 1966 -- 1.4.3 The M=7.1 Mudurnu Valley Earthquake of 22 July 1967 -- 1.4.4 The M=6.4 Pattan Earthquake of 28 December 1974 -- 1.4.5 The M=6.3 Gemona di Friuli Earthquake of 6 May 1976 -- 1.4.6 The M=7.2 Romania Earthquake of 4 March 1977 -- 1.5 EERI Learning from Earthquakes Programme (1972-2014) -- 1.5.1 Contributions to Structural Engineering -- 1.5.2 Contributions to Site Effects and Geotechnical Engineering -- 1.5.3 Contributions to Lifeline Engineering -- 1.5.4 Contributions to Social Science (and Urban Planning) -- 1.5.5 Use of Information Technology -- 1.6 EEFIT (1982-2014) -- 1.7 Other Post-Earthquake Field Reconnaissance Teams -- 1.7.1 Japanese Society for Civil Engineering (JSCE) -- 1.7.2 German Task Force (GTF) -- 1.7.3 AFPS (Association Francaise du Genie Parasismique) -- 1.8 Some Contributions of Post-Earthquake Field Missions to Earthquake Engineering -- 1.8.1 Understanding Performance of Non-engineered Structures -- 1.8.2 Understanding Human Casualties -- 1.8.3 Assembly of Data on Earthquake Consequences -- 1.8.4 GEM Earthquake Consequences Database -- 1.8.5 Post-Earthquake Image Archives -- 1.8.6 Use and Limitations of Remote Sensing -- 1.9 The Future of Earthquake Field Missions -- 1.10 Conclusions -- References -- Chapter 2: Rapid Earthquake Loss Assessment After Damaging Earthquakes -- 2.1 Introduction -- 2.2 Earthquake Loss Estimation Methodology -- 2.2.1 Ground Motion.
2.2.2 Direct Physical Damage to Building Stock -- 2.2.2.1 Inventory -- 2.2.2.2 Fragility Functions -- 2.2.3 Casualties as Direct Social Losses -- 2.2.4 Estimation of Economic Losses -- 2.2.5 Uncertainties in Loss Estimation -- 2.3 Earthquake Loss Estimation Software Tools -- 2.3.1 HAZUS -- 2.3.2 EPEDAT -- 2.3.3 SIGE -- 2.3.4 KOERILOSS -- 2.3.5 ESCENARIS -- 2.3.6 CAPRA -- 2.3.7 LNECLOSS -- 2.3.8 SELENA -- 2.3.9 DBELA -- 2.3.10 EQSIM -- 2.3.11 QUAKELOSS -- 2.3.12 NHEMATIS -- 2.3.13 EQRM -- 2.3.14 OSRE -- 2.3.15 ELER -- 2.3.16 MAEVIZ -- 2.4 Earthquake Rapid Loss Assessment Systems -- 2.4.1 PAGER (Prompt Assessment of Global Earthquakes for Response) -- 2.4.1.1 Process -- 2.4.1.2 Building and Population Inventories and Fragilities -- 2.4.1.3 Economic Loss Estimation -- 2.4.2 GDACS: The Global Disaster Alert and Coordination System -- 2.4.3 WAPMERR-QLARM World Agency of Planetary Monitoring and Earthquake Risk Reduction -- 2.4.4 ELER: Earthquake Loss Estimation -- 2.4.4.1 Demographic and Building Inventory -- 2.4.4.2 Building Damage Estimation -- 2.4.4.3 Casualty Estimation -- 2.4.5 SELENA: Seismic Loss Computation Engine -- 2.5 Local Earthquake Rapid Loss Assessment Systems -- 2.5.1 Earthquake Rapid Reporting System in Taiwan -- 2.5.2 Istanbul Earthquake Rapid Response System -- 2.5.3 IGDAS: Istanbul Natural Gas Earthquake Response System -- 2.5.4 REaltime Assessment of Earthquake Disaster in Yokohama (READY) -- 2.5.5 Tokyo Gas: Supreme System -- 2.6 Comments and Conclusions -- References -- Chapter 3: Existing Buildings: The New Italian Provisions for Probabilistic Seismic Assessment -- 3.1 Preamble -- 3.1.1 The Present Normative State and the Purpose of the New Document Issued by the National Research Council -- 3.1.2 The Content of the CNR Instructions -- 3.2 Methodological Aspects Common to All Typologies -- 3.2.1 Limit States.
3.2.2 Target Performances -- 3.2.3 Seismic Action -- 3.2.4 Knowledge Acquisition -- 3.2.5 Uncertainty Modeling -- 3.2.6 Structural Analysis and Modeling -- 3.2.7 Identification of LS Exceedance -- 3.2.7.1 Light Damage -- 3.2.7.2 Severe Damage -- 3.2.7.3 Collapse -- 3.2.8 Assessment Methods -- 3.2.8.1 Method A: Incremental Dynamic Analysis on the Complete Model -- 3.2.8.2 Method B: Incremental Dynamic Analysis on an Equivalent Single Degree-of-Freedom Oscillator -- 3.2.8.3 Method C: Non-linear Static Analysis and Response Surface -- 3.3 RC Specific Provisions -- 3.3.1 Response Models -- 3.3.2 Capacity Models -- 3.3.2.1 Biaxial Verification -- 3.4 Example Application to an RC Building -- 3.4.1 Premise -- 3.4.2 Description of the Structure -- 3.4.3 Seismic Action -- 3.4.4 Preliminary Analysis and Test Results -- 3.4.5 Structural Modeling -- 3.4.6 Uncertainty Modeling -- 3.4.7 Method B and Response Analysis via Modal Pushover -- 3.4.8 Results -- 3.5 Conclusions -- References -- Chapter 4: Seismic Response of Precast Industrial Buildings -- 4.1 Introduction -- 4.2 Post-Earthquake Inspections -- 4.3 Past Research - General Overview -- 4.4 European Research in Support of the Eurocode-8 Developments -- 4.4.1 Cyclic and PSD Tests of Precast Columns in Socket Foundations (ASSOBETON) -- 4.4.2 Comparison of the Seismic Response of the Precast and Cast-In-Situ Portal Frame (ECOLEADER) -- 4.4.3 PRECAST - Seismic Behaviour of Precast Concrete Structure with Respect to EC8 -- 4.4.4 SAFECAST - Performance of Innovative Mechanical Connections in Precast Building Structures Under Seismic Conditions -- 4.4.5 SAFECLADDING - Improved Fastening Systems of Cladding Wall Panels of Precast Buildings in Seismic Zones -- 4.5 Modelling of the Inelastic Seismic Response of Slender Cantilever Columns -- 4.6 Cyclic Response of Beam-to-Column Dowel Connections.
4.6.1 Capacity of the Beam-Column Connection with Dowels Embedded Deep in the Concrete Core -- 4.6.2 Capacity of the Beam-Column Connections with Dowels Placed Close to the Edge of the Column -- 4.7 Cyclic Response of Typical Cladding-to-Structure Connections -- 4.8 Higher Modes Effects in Multi-Storey Precast Industrial Buildings -- 4.9 Seismic Collapse Risk of Precast Industrial Buildings -- 4.9.1 Seismic Collapse Risk of Single-Storey Precast Industrial Buildings with Strong Connections -- 4.9.2 Seismic Collapse Risk of Multi-Storey Precast Industrial buildings with Strong and Weak Connections -- 4.10 Eurocode 8 Implications -- 4.11 Conclusions -- References -- Chapter 5: The Role of Site Effects at the Boundary Between Seismology and Engineering: Lessons from Recent Earthquakes -- 5.1 Introduction -- 5.2 How Reliable Are ``Free-Field ́́Strong Motion Recordings? -- 5.2.1 Housing and City-Soil Effects -- 5.2.2 Over-Correction of Displacements -- 5.2.3 Spurious Transient in Strong Motion Recordings -- 5.3 Comparison Between Code Spectra and Observed Strong Motion -- 5.4 When Reality Is Far from Models -- 5.4.1 Need for Nanozonation? -- 5.4.2 Velocity Inversions -- 5.4.3 The Role of Topographic Amplification -- 5.4.4 The Role of Non-linearity -- 5.4.5 Vertical Component and P-Wave Amplification -- 5.4.6 Time Distribution of Seismic Actions -- 5.5 A Look to the Future -- References -- Chapter 6: Seismic Analysis and Design of Bridges with an Emphasis to Eurocode Standards -- 6.1 Introduction -- 6.2 The Strength and the Effective Stiffness - The Equal Displacement Rule -- 6.3 The Nonlinear Static Pushover Analysis -- 6.3.1 Specifics of the N2 Method When Applied to the Analysis of Bridges -- 6.3.1.1 Distribution of the Lateral Load -- 6.3.1.2 The Choice of the Reference Point -- 6.3.1.3 Idealization of the Pushover Curve, Target Displacement.
6.3.2 Applicability of the N2 Method -- 6.3.3 Alternative Pushover Methods of Analysis -- 6.3.3.1 The MPA Method -- 6.3.3.2 The IRSA Method -- 6.4 The Shear Strength of RC Columns -- 6.5 The Buckling of the Longitudinal Bars and Confinement of the Core of Cross-Sections -- 6.6 Conclusions and Final Remarks -- References -- Chapter 7: From Performance- and Displacement-Based Assessment of Existing Buildings per EN1998-3 to Design of New Concrete St... -- 7.1 The European Seismic Codes Before EN-Eurocode 8 -- 7.2 Performance-Based Earthquake Engineering -- 7.3 Displacement-Based Seismic Design or Assessment -- 7.4 Performance- and Displacement-Based Seismic Assessment of Existing Buildings in Part 3 of EN-Eurocode 8 -- 7.4.1 The Context -- 7.4.2 Performance Objectives -- 7.4.3 Compliance Criteria -- 7.4.4 Analysis for the Determination of Seismic Action Effects -- 7.4.4.1 General Principles -- 7.4.4.2 Effective Elastic Stiffness for the Analysis -- 7.4.4.3 Nonlinear Analysis -- 7.4.4.4 Linear Analysis for the Calculation of Seismic Deformations -- 7.4.5 Cyclic Plastic (Chord) Rotation Capacity for Verification of Flexural Deformations -- 7.4.5.1 ``Physical Model ́́Using Curvatures and Plastic Hinge Length -- 7.4.5.2 Empirical Rotation Capacity: Sections with Rectangular Parts -- 7.4.6 Cyclic Shear Resistance -- 7.4.6.1 Diagonal Tension Strength After Flexural Yielding -- 7.4.6.2 Diagonal Compression Strength of Squat Walls and Columns -- 7.5 Performance- and Displacement-Based Seismic Design of New Concrete Structures in the 2010 Model Code of fib -- 7.5.1 Introduction -- 7.5.2 Performance Objectives -- 7.5.3 Compliance Criteria -- 7.5.4 Analysis for the Determination of Seismic Action Effects -- 7.5.4.1 Effective Elastic Stiffness for the Analysis -- 7.5.4.2 Nonlinear Analysis -- 7.5.4.3 Linear Analysis for the Calculation of Seismic Deformations.
7.5.5 Cyclic Plastic (Chord) Rotation Capacity.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Print version: Ansal, Atilla Perspectives on European Earthquake Engineering and Seismology Cham : Springer International Publishing AG,c2014 9783319071176
ProQuest (Firm)
Geotechnical, Geological and Earthquake Engineering Series
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422780 Click to View
language English
format eBook
author Ansal, Atilla.
spellingShingle Ansal, Atilla.
Perspectives on European Earthquake Engineering and Seismology : Volume 1.
Geotechnical, Geological and Earthquake Engineering Series ;
Intro -- Preface -- Contents -- Chapter 1: The Full-Scale Laboratory: The Practice of Post-Earthquake Reconnaissance Missions and Their Contribution to Earthq... -- 1.1 Introduction -- 1.2 Early Field Investigations -- 1.3 Malletś Investigation of the 1857 Neapolitan Earthquake -- 1.4 UNESCO Field Missions 1962-1980 -- 1.4.1 The M=6.1 Skopje Earthquake of 26 July 1963 -- 1.4.2 The M=6.8 Varto-Üstükran Earthquake of 19 August 1966 -- 1.4.3 The M=7.1 Mudurnu Valley Earthquake of 22 July 1967 -- 1.4.4 The M=6.4 Pattan Earthquake of 28 December 1974 -- 1.4.5 The M=6.3 Gemona di Friuli Earthquake of 6 May 1976 -- 1.4.6 The M=7.2 Romania Earthquake of 4 March 1977 -- 1.5 EERI Learning from Earthquakes Programme (1972-2014) -- 1.5.1 Contributions to Structural Engineering -- 1.5.2 Contributions to Site Effects and Geotechnical Engineering -- 1.5.3 Contributions to Lifeline Engineering -- 1.5.4 Contributions to Social Science (and Urban Planning) -- 1.5.5 Use of Information Technology -- 1.6 EEFIT (1982-2014) -- 1.7 Other Post-Earthquake Field Reconnaissance Teams -- 1.7.1 Japanese Society for Civil Engineering (JSCE) -- 1.7.2 German Task Force (GTF) -- 1.7.3 AFPS (Association Francaise du Genie Parasismique) -- 1.8 Some Contributions of Post-Earthquake Field Missions to Earthquake Engineering -- 1.8.1 Understanding Performance of Non-engineered Structures -- 1.8.2 Understanding Human Casualties -- 1.8.3 Assembly of Data on Earthquake Consequences -- 1.8.4 GEM Earthquake Consequences Database -- 1.8.5 Post-Earthquake Image Archives -- 1.8.6 Use and Limitations of Remote Sensing -- 1.9 The Future of Earthquake Field Missions -- 1.10 Conclusions -- References -- Chapter 2: Rapid Earthquake Loss Assessment After Damaging Earthquakes -- 2.1 Introduction -- 2.2 Earthquake Loss Estimation Methodology -- 2.2.1 Ground Motion.
2.2.2 Direct Physical Damage to Building Stock -- 2.2.2.1 Inventory -- 2.2.2.2 Fragility Functions -- 2.2.3 Casualties as Direct Social Losses -- 2.2.4 Estimation of Economic Losses -- 2.2.5 Uncertainties in Loss Estimation -- 2.3 Earthquake Loss Estimation Software Tools -- 2.3.1 HAZUS -- 2.3.2 EPEDAT -- 2.3.3 SIGE -- 2.3.4 KOERILOSS -- 2.3.5 ESCENARIS -- 2.3.6 CAPRA -- 2.3.7 LNECLOSS -- 2.3.8 SELENA -- 2.3.9 DBELA -- 2.3.10 EQSIM -- 2.3.11 QUAKELOSS -- 2.3.12 NHEMATIS -- 2.3.13 EQRM -- 2.3.14 OSRE -- 2.3.15 ELER -- 2.3.16 MAEVIZ -- 2.4 Earthquake Rapid Loss Assessment Systems -- 2.4.1 PAGER (Prompt Assessment of Global Earthquakes for Response) -- 2.4.1.1 Process -- 2.4.1.2 Building and Population Inventories and Fragilities -- 2.4.1.3 Economic Loss Estimation -- 2.4.2 GDACS: The Global Disaster Alert and Coordination System -- 2.4.3 WAPMERR-QLARM World Agency of Planetary Monitoring and Earthquake Risk Reduction -- 2.4.4 ELER: Earthquake Loss Estimation -- 2.4.4.1 Demographic and Building Inventory -- 2.4.4.2 Building Damage Estimation -- 2.4.4.3 Casualty Estimation -- 2.4.5 SELENA: Seismic Loss Computation Engine -- 2.5 Local Earthquake Rapid Loss Assessment Systems -- 2.5.1 Earthquake Rapid Reporting System in Taiwan -- 2.5.2 Istanbul Earthquake Rapid Response System -- 2.5.3 IGDAS: Istanbul Natural Gas Earthquake Response System -- 2.5.4 REaltime Assessment of Earthquake Disaster in Yokohama (READY) -- 2.5.5 Tokyo Gas: Supreme System -- 2.6 Comments and Conclusions -- References -- Chapter 3: Existing Buildings: The New Italian Provisions for Probabilistic Seismic Assessment -- 3.1 Preamble -- 3.1.1 The Present Normative State and the Purpose of the New Document Issued by the National Research Council -- 3.1.2 The Content of the CNR Instructions -- 3.2 Methodological Aspects Common to All Typologies -- 3.2.1 Limit States.
3.2.2 Target Performances -- 3.2.3 Seismic Action -- 3.2.4 Knowledge Acquisition -- 3.2.5 Uncertainty Modeling -- 3.2.6 Structural Analysis and Modeling -- 3.2.7 Identification of LS Exceedance -- 3.2.7.1 Light Damage -- 3.2.7.2 Severe Damage -- 3.2.7.3 Collapse -- 3.2.8 Assessment Methods -- 3.2.8.1 Method A: Incremental Dynamic Analysis on the Complete Model -- 3.2.8.2 Method B: Incremental Dynamic Analysis on an Equivalent Single Degree-of-Freedom Oscillator -- 3.2.8.3 Method C: Non-linear Static Analysis and Response Surface -- 3.3 RC Specific Provisions -- 3.3.1 Response Models -- 3.3.2 Capacity Models -- 3.3.2.1 Biaxial Verification -- 3.4 Example Application to an RC Building -- 3.4.1 Premise -- 3.4.2 Description of the Structure -- 3.4.3 Seismic Action -- 3.4.4 Preliminary Analysis and Test Results -- 3.4.5 Structural Modeling -- 3.4.6 Uncertainty Modeling -- 3.4.7 Method B and Response Analysis via Modal Pushover -- 3.4.8 Results -- 3.5 Conclusions -- References -- Chapter 4: Seismic Response of Precast Industrial Buildings -- 4.1 Introduction -- 4.2 Post-Earthquake Inspections -- 4.3 Past Research - General Overview -- 4.4 European Research in Support of the Eurocode-8 Developments -- 4.4.1 Cyclic and PSD Tests of Precast Columns in Socket Foundations (ASSOBETON) -- 4.4.2 Comparison of the Seismic Response of the Precast and Cast-In-Situ Portal Frame (ECOLEADER) -- 4.4.3 PRECAST - Seismic Behaviour of Precast Concrete Structure with Respect to EC8 -- 4.4.4 SAFECAST - Performance of Innovative Mechanical Connections in Precast Building Structures Under Seismic Conditions -- 4.4.5 SAFECLADDING - Improved Fastening Systems of Cladding Wall Panels of Precast Buildings in Seismic Zones -- 4.5 Modelling of the Inelastic Seismic Response of Slender Cantilever Columns -- 4.6 Cyclic Response of Beam-to-Column Dowel Connections.
4.6.1 Capacity of the Beam-Column Connection with Dowels Embedded Deep in the Concrete Core -- 4.6.2 Capacity of the Beam-Column Connections with Dowels Placed Close to the Edge of the Column -- 4.7 Cyclic Response of Typical Cladding-to-Structure Connections -- 4.8 Higher Modes Effects in Multi-Storey Precast Industrial Buildings -- 4.9 Seismic Collapse Risk of Precast Industrial Buildings -- 4.9.1 Seismic Collapse Risk of Single-Storey Precast Industrial Buildings with Strong Connections -- 4.9.2 Seismic Collapse Risk of Multi-Storey Precast Industrial buildings with Strong and Weak Connections -- 4.10 Eurocode 8 Implications -- 4.11 Conclusions -- References -- Chapter 5: The Role of Site Effects at the Boundary Between Seismology and Engineering: Lessons from Recent Earthquakes -- 5.1 Introduction -- 5.2 How Reliable Are ``Free-Field ́́Strong Motion Recordings? -- 5.2.1 Housing and City-Soil Effects -- 5.2.2 Over-Correction of Displacements -- 5.2.3 Spurious Transient in Strong Motion Recordings -- 5.3 Comparison Between Code Spectra and Observed Strong Motion -- 5.4 When Reality Is Far from Models -- 5.4.1 Need for Nanozonation? -- 5.4.2 Velocity Inversions -- 5.4.3 The Role of Topographic Amplification -- 5.4.4 The Role of Non-linearity -- 5.4.5 Vertical Component and P-Wave Amplification -- 5.4.6 Time Distribution of Seismic Actions -- 5.5 A Look to the Future -- References -- Chapter 6: Seismic Analysis and Design of Bridges with an Emphasis to Eurocode Standards -- 6.1 Introduction -- 6.2 The Strength and the Effective Stiffness - The Equal Displacement Rule -- 6.3 The Nonlinear Static Pushover Analysis -- 6.3.1 Specifics of the N2 Method When Applied to the Analysis of Bridges -- 6.3.1.1 Distribution of the Lateral Load -- 6.3.1.2 The Choice of the Reference Point -- 6.3.1.3 Idealization of the Pushover Curve, Target Displacement.
6.3.2 Applicability of the N2 Method -- 6.3.3 Alternative Pushover Methods of Analysis -- 6.3.3.1 The MPA Method -- 6.3.3.2 The IRSA Method -- 6.4 The Shear Strength of RC Columns -- 6.5 The Buckling of the Longitudinal Bars and Confinement of the Core of Cross-Sections -- 6.6 Conclusions and Final Remarks -- References -- Chapter 7: From Performance- and Displacement-Based Assessment of Existing Buildings per EN1998-3 to Design of New Concrete St... -- 7.1 The European Seismic Codes Before EN-Eurocode 8 -- 7.2 Performance-Based Earthquake Engineering -- 7.3 Displacement-Based Seismic Design or Assessment -- 7.4 Performance- and Displacement-Based Seismic Assessment of Existing Buildings in Part 3 of EN-Eurocode 8 -- 7.4.1 The Context -- 7.4.2 Performance Objectives -- 7.4.3 Compliance Criteria -- 7.4.4 Analysis for the Determination of Seismic Action Effects -- 7.4.4.1 General Principles -- 7.4.4.2 Effective Elastic Stiffness for the Analysis -- 7.4.4.3 Nonlinear Analysis -- 7.4.4.4 Linear Analysis for the Calculation of Seismic Deformations -- 7.4.5 Cyclic Plastic (Chord) Rotation Capacity for Verification of Flexural Deformations -- 7.4.5.1 ``Physical Model ́́Using Curvatures and Plastic Hinge Length -- 7.4.5.2 Empirical Rotation Capacity: Sections with Rectangular Parts -- 7.4.6 Cyclic Shear Resistance -- 7.4.6.1 Diagonal Tension Strength After Flexural Yielding -- 7.4.6.2 Diagonal Compression Strength of Squat Walls and Columns -- 7.5 Performance- and Displacement-Based Seismic Design of New Concrete Structures in the 2010 Model Code of fib -- 7.5.1 Introduction -- 7.5.2 Performance Objectives -- 7.5.3 Compliance Criteria -- 7.5.4 Analysis for the Determination of Seismic Action Effects -- 7.5.4.1 Effective Elastic Stiffness for the Analysis -- 7.5.4.2 Nonlinear Analysis -- 7.5.4.3 Linear Analysis for the Calculation of Seismic Deformations.
7.5.5 Cyclic Plastic (Chord) Rotation Capacity.
author_facet Ansal, Atilla.
author_variant a a aa
author_sort Ansal, Atilla.
title Perspectives on European Earthquake Engineering and Seismology : Volume 1.
title_sub Volume 1.
title_full Perspectives on European Earthquake Engineering and Seismology : Volume 1.
title_fullStr Perspectives on European Earthquake Engineering and Seismology : Volume 1.
title_full_unstemmed Perspectives on European Earthquake Engineering and Seismology : Volume 1.
title_auth Perspectives on European Earthquake Engineering and Seismology : Volume 1.
title_new Perspectives on European Earthquake Engineering and Seismology :
title_sort perspectives on european earthquake engineering and seismology : volume 1.
series Geotechnical, Geological and Earthquake Engineering Series ;
series2 Geotechnical, Geological and Earthquake Engineering Series ;
publisher Springer International Publishing AG,
publishDate 2014
physical 1 online resource (654 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- Chapter 1: The Full-Scale Laboratory: The Practice of Post-Earthquake Reconnaissance Missions and Their Contribution to Earthq... -- 1.1 Introduction -- 1.2 Early Field Investigations -- 1.3 Malletś Investigation of the 1857 Neapolitan Earthquake -- 1.4 UNESCO Field Missions 1962-1980 -- 1.4.1 The M=6.1 Skopje Earthquake of 26 July 1963 -- 1.4.2 The M=6.8 Varto-Üstükran Earthquake of 19 August 1966 -- 1.4.3 The M=7.1 Mudurnu Valley Earthquake of 22 July 1967 -- 1.4.4 The M=6.4 Pattan Earthquake of 28 December 1974 -- 1.4.5 The M=6.3 Gemona di Friuli Earthquake of 6 May 1976 -- 1.4.6 The M=7.2 Romania Earthquake of 4 March 1977 -- 1.5 EERI Learning from Earthquakes Programme (1972-2014) -- 1.5.1 Contributions to Structural Engineering -- 1.5.2 Contributions to Site Effects and Geotechnical Engineering -- 1.5.3 Contributions to Lifeline Engineering -- 1.5.4 Contributions to Social Science (and Urban Planning) -- 1.5.5 Use of Information Technology -- 1.6 EEFIT (1982-2014) -- 1.7 Other Post-Earthquake Field Reconnaissance Teams -- 1.7.1 Japanese Society for Civil Engineering (JSCE) -- 1.7.2 German Task Force (GTF) -- 1.7.3 AFPS (Association Francaise du Genie Parasismique) -- 1.8 Some Contributions of Post-Earthquake Field Missions to Earthquake Engineering -- 1.8.1 Understanding Performance of Non-engineered Structures -- 1.8.2 Understanding Human Casualties -- 1.8.3 Assembly of Data on Earthquake Consequences -- 1.8.4 GEM Earthquake Consequences Database -- 1.8.5 Post-Earthquake Image Archives -- 1.8.6 Use and Limitations of Remote Sensing -- 1.9 The Future of Earthquake Field Missions -- 1.10 Conclusions -- References -- Chapter 2: Rapid Earthquake Loss Assessment After Damaging Earthquakes -- 2.1 Introduction -- 2.2 Earthquake Loss Estimation Methodology -- 2.2.1 Ground Motion.
2.2.2 Direct Physical Damage to Building Stock -- 2.2.2.1 Inventory -- 2.2.2.2 Fragility Functions -- 2.2.3 Casualties as Direct Social Losses -- 2.2.4 Estimation of Economic Losses -- 2.2.5 Uncertainties in Loss Estimation -- 2.3 Earthquake Loss Estimation Software Tools -- 2.3.1 HAZUS -- 2.3.2 EPEDAT -- 2.3.3 SIGE -- 2.3.4 KOERILOSS -- 2.3.5 ESCENARIS -- 2.3.6 CAPRA -- 2.3.7 LNECLOSS -- 2.3.8 SELENA -- 2.3.9 DBELA -- 2.3.10 EQSIM -- 2.3.11 QUAKELOSS -- 2.3.12 NHEMATIS -- 2.3.13 EQRM -- 2.3.14 OSRE -- 2.3.15 ELER -- 2.3.16 MAEVIZ -- 2.4 Earthquake Rapid Loss Assessment Systems -- 2.4.1 PAGER (Prompt Assessment of Global Earthquakes for Response) -- 2.4.1.1 Process -- 2.4.1.2 Building and Population Inventories and Fragilities -- 2.4.1.3 Economic Loss Estimation -- 2.4.2 GDACS: The Global Disaster Alert and Coordination System -- 2.4.3 WAPMERR-QLARM World Agency of Planetary Monitoring and Earthquake Risk Reduction -- 2.4.4 ELER: Earthquake Loss Estimation -- 2.4.4.1 Demographic and Building Inventory -- 2.4.4.2 Building Damage Estimation -- 2.4.4.3 Casualty Estimation -- 2.4.5 SELENA: Seismic Loss Computation Engine -- 2.5 Local Earthquake Rapid Loss Assessment Systems -- 2.5.1 Earthquake Rapid Reporting System in Taiwan -- 2.5.2 Istanbul Earthquake Rapid Response System -- 2.5.3 IGDAS: Istanbul Natural Gas Earthquake Response System -- 2.5.4 REaltime Assessment of Earthquake Disaster in Yokohama (READY) -- 2.5.5 Tokyo Gas: Supreme System -- 2.6 Comments and Conclusions -- References -- Chapter 3: Existing Buildings: The New Italian Provisions for Probabilistic Seismic Assessment -- 3.1 Preamble -- 3.1.1 The Present Normative State and the Purpose of the New Document Issued by the National Research Council -- 3.1.2 The Content of the CNR Instructions -- 3.2 Methodological Aspects Common to All Typologies -- 3.2.1 Limit States.
3.2.2 Target Performances -- 3.2.3 Seismic Action -- 3.2.4 Knowledge Acquisition -- 3.2.5 Uncertainty Modeling -- 3.2.6 Structural Analysis and Modeling -- 3.2.7 Identification of LS Exceedance -- 3.2.7.1 Light Damage -- 3.2.7.2 Severe Damage -- 3.2.7.3 Collapse -- 3.2.8 Assessment Methods -- 3.2.8.1 Method A: Incremental Dynamic Analysis on the Complete Model -- 3.2.8.2 Method B: Incremental Dynamic Analysis on an Equivalent Single Degree-of-Freedom Oscillator -- 3.2.8.3 Method C: Non-linear Static Analysis and Response Surface -- 3.3 RC Specific Provisions -- 3.3.1 Response Models -- 3.3.2 Capacity Models -- 3.3.2.1 Biaxial Verification -- 3.4 Example Application to an RC Building -- 3.4.1 Premise -- 3.4.2 Description of the Structure -- 3.4.3 Seismic Action -- 3.4.4 Preliminary Analysis and Test Results -- 3.4.5 Structural Modeling -- 3.4.6 Uncertainty Modeling -- 3.4.7 Method B and Response Analysis via Modal Pushover -- 3.4.8 Results -- 3.5 Conclusions -- References -- Chapter 4: Seismic Response of Precast Industrial Buildings -- 4.1 Introduction -- 4.2 Post-Earthquake Inspections -- 4.3 Past Research - General Overview -- 4.4 European Research in Support of the Eurocode-8 Developments -- 4.4.1 Cyclic and PSD Tests of Precast Columns in Socket Foundations (ASSOBETON) -- 4.4.2 Comparison of the Seismic Response of the Precast and Cast-In-Situ Portal Frame (ECOLEADER) -- 4.4.3 PRECAST - Seismic Behaviour of Precast Concrete Structure with Respect to EC8 -- 4.4.4 SAFECAST - Performance of Innovative Mechanical Connections in Precast Building Structures Under Seismic Conditions -- 4.4.5 SAFECLADDING - Improved Fastening Systems of Cladding Wall Panels of Precast Buildings in Seismic Zones -- 4.5 Modelling of the Inelastic Seismic Response of Slender Cantilever Columns -- 4.6 Cyclic Response of Beam-to-Column Dowel Connections.
4.6.1 Capacity of the Beam-Column Connection with Dowels Embedded Deep in the Concrete Core -- 4.6.2 Capacity of the Beam-Column Connections with Dowels Placed Close to the Edge of the Column -- 4.7 Cyclic Response of Typical Cladding-to-Structure Connections -- 4.8 Higher Modes Effects in Multi-Storey Precast Industrial Buildings -- 4.9 Seismic Collapse Risk of Precast Industrial Buildings -- 4.9.1 Seismic Collapse Risk of Single-Storey Precast Industrial Buildings with Strong Connections -- 4.9.2 Seismic Collapse Risk of Multi-Storey Precast Industrial buildings with Strong and Weak Connections -- 4.10 Eurocode 8 Implications -- 4.11 Conclusions -- References -- Chapter 5: The Role of Site Effects at the Boundary Between Seismology and Engineering: Lessons from Recent Earthquakes -- 5.1 Introduction -- 5.2 How Reliable Are ``Free-Field ́́Strong Motion Recordings? -- 5.2.1 Housing and City-Soil Effects -- 5.2.2 Over-Correction of Displacements -- 5.2.3 Spurious Transient in Strong Motion Recordings -- 5.3 Comparison Between Code Spectra and Observed Strong Motion -- 5.4 When Reality Is Far from Models -- 5.4.1 Need for Nanozonation? -- 5.4.2 Velocity Inversions -- 5.4.3 The Role of Topographic Amplification -- 5.4.4 The Role of Non-linearity -- 5.4.5 Vertical Component and P-Wave Amplification -- 5.4.6 Time Distribution of Seismic Actions -- 5.5 A Look to the Future -- References -- Chapter 6: Seismic Analysis and Design of Bridges with an Emphasis to Eurocode Standards -- 6.1 Introduction -- 6.2 The Strength and the Effective Stiffness - The Equal Displacement Rule -- 6.3 The Nonlinear Static Pushover Analysis -- 6.3.1 Specifics of the N2 Method When Applied to the Analysis of Bridges -- 6.3.1.1 Distribution of the Lateral Load -- 6.3.1.2 The Choice of the Reference Point -- 6.3.1.3 Idealization of the Pushover Curve, Target Displacement.
6.3.2 Applicability of the N2 Method -- 6.3.3 Alternative Pushover Methods of Analysis -- 6.3.3.1 The MPA Method -- 6.3.3.2 The IRSA Method -- 6.4 The Shear Strength of RC Columns -- 6.5 The Buckling of the Longitudinal Bars and Confinement of the Core of Cross-Sections -- 6.6 Conclusions and Final Remarks -- References -- Chapter 7: From Performance- and Displacement-Based Assessment of Existing Buildings per EN1998-3 to Design of New Concrete St... -- 7.1 The European Seismic Codes Before EN-Eurocode 8 -- 7.2 Performance-Based Earthquake Engineering -- 7.3 Displacement-Based Seismic Design or Assessment -- 7.4 Performance- and Displacement-Based Seismic Assessment of Existing Buildings in Part 3 of EN-Eurocode 8 -- 7.4.1 The Context -- 7.4.2 Performance Objectives -- 7.4.3 Compliance Criteria -- 7.4.4 Analysis for the Determination of Seismic Action Effects -- 7.4.4.1 General Principles -- 7.4.4.2 Effective Elastic Stiffness for the Analysis -- 7.4.4.3 Nonlinear Analysis -- 7.4.4.4 Linear Analysis for the Calculation of Seismic Deformations -- 7.4.5 Cyclic Plastic (Chord) Rotation Capacity for Verification of Flexural Deformations -- 7.4.5.1 ``Physical Model ́́Using Curvatures and Plastic Hinge Length -- 7.4.5.2 Empirical Rotation Capacity: Sections with Rectangular Parts -- 7.4.6 Cyclic Shear Resistance -- 7.4.6.1 Diagonal Tension Strength After Flexural Yielding -- 7.4.6.2 Diagonal Compression Strength of Squat Walls and Columns -- 7.5 Performance- and Displacement-Based Seismic Design of New Concrete Structures in the 2010 Model Code of fib -- 7.5.1 Introduction -- 7.5.2 Performance Objectives -- 7.5.3 Compliance Criteria -- 7.5.4 Analysis for the Determination of Seismic Action Effects -- 7.5.4.1 Effective Elastic Stiffness for the Analysis -- 7.5.4.2 Nonlinear Analysis -- 7.5.4.3 Linear Analysis for the Calculation of Seismic Deformations.
7.5.5 Cyclic Plastic (Chord) Rotation Capacity.
isbn 9783319071183
9783319071176
callnumber-first T - Technology
callnumber-subject TA - General and Civil Engineering
callnumber-label TA1-2040
callnumber-sort TA 11 42040
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422780
illustrated Not Illustrated
dewey-hundreds 600 - Technology
dewey-tens 620 - Engineering
dewey-ones 624 - Civil engineering
dewey-full 624.1762
dewey-sort 3624.1762
dewey-raw 624.1762
dewey-search 624.1762
oclc_num 890933162
work_keys_str_mv AT ansalatilla perspectivesoneuropeanearthquakeengineeringandseismologyvolume1
status_str n
ids_txt_mv (MiAaPQ)5006422780
(Au-PeEL)EBL6422780
(OCoLC)890933162
carrierType_str_mv cr
hierarchy_parent_title Geotechnical, Geological and Earthquake Engineering Series ; v.34
is_hierarchy_title Perspectives on European Earthquake Engineering and Seismology : Volume 1.
container_title Geotechnical, Geological and Earthquake Engineering Series ; v.34
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331059275235329
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11146nam a22004693i 4500</leader><controlfield tag="001">5006422780</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073838.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2014 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319071183</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783319071176</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006422780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6422780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890933162</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">624.1762</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ansal, Atilla.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perspectives on European Earthquake Engineering and Seismology :</subfield><subfield code="b">Volume 1.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2014.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2014.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (654 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Geotechnical, Geological and Earthquake Engineering Series ;</subfield><subfield code="v">v.34</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Chapter 1: The Full-Scale Laboratory: The Practice of Post-Earthquake Reconnaissance Missions and Their Contribution to Earthq... -- 1.1 Introduction -- 1.2 Early Field Investigations -- 1.3 Malletś Investigation of the 1857 Neapolitan Earthquake -- 1.4 UNESCO Field Missions 1962-1980 -- 1.4.1 The M=6.1 Skopje Earthquake of 26 July 1963 -- 1.4.2 The M=6.8 Varto-Üstükran Earthquake of 19 August 1966 -- 1.4.3 The M=7.1 Mudurnu Valley Earthquake of 22 July 1967 -- 1.4.4 The M=6.4 Pattan Earthquake of 28 December 1974 -- 1.4.5 The M=6.3 Gemona di Friuli Earthquake of 6 May 1976 -- 1.4.6 The M=7.2 Romania Earthquake of 4 March 1977 -- 1.5 EERI Learning from Earthquakes Programme (1972-2014) -- 1.5.1 Contributions to Structural Engineering -- 1.5.2 Contributions to Site Effects and Geotechnical Engineering -- 1.5.3 Contributions to Lifeline Engineering -- 1.5.4 Contributions to Social Science (and Urban Planning) -- 1.5.5 Use of Information Technology -- 1.6 EEFIT (1982-2014) -- 1.7 Other Post-Earthquake Field Reconnaissance Teams -- 1.7.1 Japanese Society for Civil Engineering (JSCE) -- 1.7.2 German Task Force (GTF) -- 1.7.3 AFPS (Association Francaise du Genie Parasismique) -- 1.8 Some Contributions of Post-Earthquake Field Missions to Earthquake Engineering -- 1.8.1 Understanding Performance of Non-engineered Structures -- 1.8.2 Understanding Human Casualties -- 1.8.3 Assembly of Data on Earthquake Consequences -- 1.8.4 GEM Earthquake Consequences Database -- 1.8.5 Post-Earthquake Image Archives -- 1.8.6 Use and Limitations of Remote Sensing -- 1.9 The Future of Earthquake Field Missions -- 1.10 Conclusions -- References -- Chapter 2: Rapid Earthquake Loss Assessment After Damaging Earthquakes -- 2.1 Introduction -- 2.2 Earthquake Loss Estimation Methodology -- 2.2.1 Ground Motion.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2.2 Direct Physical Damage to Building Stock -- 2.2.2.1 Inventory -- 2.2.2.2 Fragility Functions -- 2.2.3 Casualties as Direct Social Losses -- 2.2.4 Estimation of Economic Losses -- 2.2.5 Uncertainties in Loss Estimation -- 2.3 Earthquake Loss Estimation Software Tools -- 2.3.1 HAZUS -- 2.3.2 EPEDAT -- 2.3.3 SIGE -- 2.3.4 KOERILOSS -- 2.3.5 ESCENARIS -- 2.3.6 CAPRA -- 2.3.7 LNECLOSS -- 2.3.8 SELENA -- 2.3.9 DBELA -- 2.3.10 EQSIM -- 2.3.11 QUAKELOSS -- 2.3.12 NHEMATIS -- 2.3.13 EQRM -- 2.3.14 OSRE -- 2.3.15 ELER -- 2.3.16 MAEVIZ -- 2.4 Earthquake Rapid Loss Assessment Systems -- 2.4.1 PAGER (Prompt Assessment of Global Earthquakes for Response) -- 2.4.1.1 Process -- 2.4.1.2 Building and Population Inventories and Fragilities -- 2.4.1.3 Economic Loss Estimation -- 2.4.2 GDACS: The Global Disaster Alert and Coordination System -- 2.4.3 WAPMERR-QLARM World Agency of Planetary Monitoring and Earthquake Risk Reduction -- 2.4.4 ELER: Earthquake Loss Estimation -- 2.4.4.1 Demographic and Building Inventory -- 2.4.4.2 Building Damage Estimation -- 2.4.4.3 Casualty Estimation -- 2.4.5 SELENA: Seismic Loss Computation Engine -- 2.5 Local Earthquake Rapid Loss Assessment Systems -- 2.5.1 Earthquake Rapid Reporting System in Taiwan -- 2.5.2 Istanbul Earthquake Rapid Response System -- 2.5.3 IGDAS: Istanbul Natural Gas Earthquake Response System -- 2.5.4 REaltime Assessment of Earthquake Disaster in Yokohama (READY) -- 2.5.5 Tokyo Gas: Supreme System -- 2.6 Comments and Conclusions -- References -- Chapter 3: Existing Buildings: The New Italian Provisions for Probabilistic Seismic Assessment -- 3.1 Preamble -- 3.1.1 The Present Normative State and the Purpose of the New Document Issued by the National Research Council -- 3.1.2 The Content of the CNR Instructions -- 3.2 Methodological Aspects Common to All Typologies -- 3.2.1 Limit States.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.2 Target Performances -- 3.2.3 Seismic Action -- 3.2.4 Knowledge Acquisition -- 3.2.5 Uncertainty Modeling -- 3.2.6 Structural Analysis and Modeling -- 3.2.7 Identification of LS Exceedance -- 3.2.7.1 Light Damage -- 3.2.7.2 Severe Damage -- 3.2.7.3 Collapse -- 3.2.8 Assessment Methods -- 3.2.8.1 Method A: Incremental Dynamic Analysis on the Complete Model -- 3.2.8.2 Method B: Incremental Dynamic Analysis on an Equivalent Single Degree-of-Freedom Oscillator -- 3.2.8.3 Method C: Non-linear Static Analysis and Response Surface -- 3.3 RC Specific Provisions -- 3.3.1 Response Models -- 3.3.2 Capacity Models -- 3.3.2.1 Biaxial Verification -- 3.4 Example Application to an RC Building -- 3.4.1 Premise -- 3.4.2 Description of the Structure -- 3.4.3 Seismic Action -- 3.4.4 Preliminary Analysis and Test Results -- 3.4.5 Structural Modeling -- 3.4.6 Uncertainty Modeling -- 3.4.7 Method B and Response Analysis via Modal Pushover -- 3.4.8 Results -- 3.5 Conclusions -- References -- Chapter 4: Seismic Response of Precast Industrial Buildings -- 4.1 Introduction -- 4.2 Post-Earthquake Inspections -- 4.3 Past Research - General Overview -- 4.4 European Research in Support of the Eurocode-8 Developments -- 4.4.1 Cyclic and PSD Tests of Precast Columns in Socket Foundations (ASSOBETON) -- 4.4.2 Comparison of the Seismic Response of the Precast and Cast-In-Situ Portal Frame (ECOLEADER) -- 4.4.3 PRECAST - Seismic Behaviour of Precast Concrete Structure with Respect to EC8 -- 4.4.4 SAFECAST - Performance of Innovative Mechanical Connections in Precast Building Structures Under Seismic Conditions -- 4.4.5 SAFECLADDING - Improved Fastening Systems of Cladding Wall Panels of Precast Buildings in Seismic Zones -- 4.5 Modelling of the Inelastic Seismic Response of Slender Cantilever Columns -- 4.6 Cyclic Response of Beam-to-Column Dowel Connections.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6.1 Capacity of the Beam-Column Connection with Dowels Embedded Deep in the Concrete Core -- 4.6.2 Capacity of the Beam-Column Connections with Dowels Placed Close to the Edge of the Column -- 4.7 Cyclic Response of Typical Cladding-to-Structure Connections -- 4.8 Higher Modes Effects in Multi-Storey Precast Industrial Buildings -- 4.9 Seismic Collapse Risk of Precast Industrial Buildings -- 4.9.1 Seismic Collapse Risk of Single-Storey Precast Industrial Buildings with Strong Connections -- 4.9.2 Seismic Collapse Risk of Multi-Storey Precast Industrial buildings with Strong and Weak Connections -- 4.10 Eurocode 8 Implications -- 4.11 Conclusions -- References -- Chapter 5: The Role of Site Effects at the Boundary Between Seismology and Engineering: Lessons from Recent Earthquakes -- 5.1 Introduction -- 5.2 How Reliable Are ``Free-Field ́́Strong Motion Recordings? -- 5.2.1 Housing and City-Soil Effects -- 5.2.2 Over-Correction of Displacements -- 5.2.3 Spurious Transient in Strong Motion Recordings -- 5.3 Comparison Between Code Spectra and Observed Strong Motion -- 5.4 When Reality Is Far from Models -- 5.4.1 Need for Nanozonation? -- 5.4.2 Velocity Inversions -- 5.4.3 The Role of Topographic Amplification -- 5.4.4 The Role of Non-linearity -- 5.4.5 Vertical Component and P-Wave Amplification -- 5.4.6 Time Distribution of Seismic Actions -- 5.5 A Look to the Future -- References -- Chapter 6: Seismic Analysis and Design of Bridges with an Emphasis to Eurocode Standards -- 6.1 Introduction -- 6.2 The Strength and the Effective Stiffness - The Equal Displacement Rule -- 6.3 The Nonlinear Static Pushover Analysis -- 6.3.1 Specifics of the N2 Method When Applied to the Analysis of Bridges -- 6.3.1.1 Distribution of the Lateral Load -- 6.3.1.2 The Choice of the Reference Point -- 6.3.1.3 Idealization of the Pushover Curve, Target Displacement.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3.2 Applicability of the N2 Method -- 6.3.3 Alternative Pushover Methods of Analysis -- 6.3.3.1 The MPA Method -- 6.3.3.2 The IRSA Method -- 6.4 The Shear Strength of RC Columns -- 6.5 The Buckling of the Longitudinal Bars and Confinement of the Core of Cross-Sections -- 6.6 Conclusions and Final Remarks -- References -- Chapter 7: From Performance- and Displacement-Based Assessment of Existing Buildings per EN1998-3 to Design of New Concrete St... -- 7.1 The European Seismic Codes Before EN-Eurocode 8 -- 7.2 Performance-Based Earthquake Engineering -- 7.3 Displacement-Based Seismic Design or Assessment -- 7.4 Performance- and Displacement-Based Seismic Assessment of Existing Buildings in Part 3 of EN-Eurocode 8 -- 7.4.1 The Context -- 7.4.2 Performance Objectives -- 7.4.3 Compliance Criteria -- 7.4.4 Analysis for the Determination of Seismic Action Effects -- 7.4.4.1 General Principles -- 7.4.4.2 Effective Elastic Stiffness for the Analysis -- 7.4.4.3 Nonlinear Analysis -- 7.4.4.4 Linear Analysis for the Calculation of Seismic Deformations -- 7.4.5 Cyclic Plastic (Chord) Rotation Capacity for Verification of Flexural Deformations -- 7.4.5.1 ``Physical Model ́́Using Curvatures and Plastic Hinge Length -- 7.4.5.2 Empirical Rotation Capacity: Sections with Rectangular Parts -- 7.4.6 Cyclic Shear Resistance -- 7.4.6.1 Diagonal Tension Strength After Flexural Yielding -- 7.4.6.2 Diagonal Compression Strength of Squat Walls and Columns -- 7.5 Performance- and Displacement-Based Seismic Design of New Concrete Structures in the 2010 Model Code of fib -- 7.5.1 Introduction -- 7.5.2 Performance Objectives -- 7.5.3 Compliance Criteria -- 7.5.4 Analysis for the Determination of Seismic Action Effects -- 7.5.4.1 Effective Elastic Stiffness for the Analysis -- 7.5.4.2 Nonlinear Analysis -- 7.5.4.3 Linear Analysis for the Calculation of Seismic Deformations.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.5.5 Cyclic Plastic (Chord) Rotation Capacity.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ansal, Atilla</subfield><subfield code="t">Perspectives on European Earthquake Engineering and Seismology</subfield><subfield code="d">Cham : Springer International Publishing AG,c2014</subfield><subfield code="z">9783319071176</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Geotechnical, Geological and Earthquake Engineering Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422780</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>