Genome Editing in Neurosciences.

Saved in:
Bibliographic Details
Superior document:Research and Perspectives in Neurosciences Series
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2017.
©2017.
Year of Publication:2017
Edition:1st ed.
Language:English
Series:Research and Perspectives in Neurosciences Series
Online Access:
Physical Description:1 online resource (129 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006422738
ctrlnum (MiAaPQ)5006422738
(Au-PeEL)EBL6422738
(OCoLC)1004664421
collection bib_alma
record_format marc
spelling Jaenisch, Rudolf.
Genome Editing in Neurosciences.
1st ed.
Cham : Springer International Publishing AG, 2017.
©2017.
1 online resource (129 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Research and Perspectives in Neurosciences Series
Intro -- Preface -- Contents -- List of Contributors -- In Vitro Modeling of Complex Neurological Diseases -- Introduction -- Induced Pluripotent Stem Cells to Model Complex Diseases -- Gene Editing to Generate Genetically Controlled Disease Models -- Functional Role of GWAS-Identified Risk Variants in Complex Disease -- Epigenomic Signatures to Prioritize GWAS-Identified Risk Variants -- Functional Analysis of Parkinsonś Disease-Associated Risk Variants -- Identification of Parkinsonś Disease-Associated Risk Variants in Brain-Specific Enhancer Elements -- Allele-Specific Gene Expression as a Robust Read-Out to Analyze Cis-Regulatory Effects -- Functional Analysis of Parkinsonś-Associated Risk Variants -- Mechanistic Study of Sporadic Diseases: Conclusions -- References -- Aquatic Model Organisms in Neurosciences: The Genome-Editing Revolution -- Introduction -- Zebrafish: With the CRiSPR-Cas9 System, Forward Genetic Screens Are Back Again -- Optimizing the Cripsr-Cas9 System in Transparent Marine Animals -- More and More Aquatic Model Organisms for Diversified Uses -- In Biomedical Research, Why and How Should We Use Aquatic Models to Study Diseases of the Nervous System? -- A Short Natural History of the Nervous System: Several Questions on Its Origin -- Conclusion -- References -- Genome-Wide Genetic Screening in the Mammalian CNS -- Introduction -- Genome-Wide Viral Library Preparation and Delivery -- Interpretation of Results -- Future Directions -- References -- CRISPR/Cas9-Mediated Knockin and Knockout in Zebrafish -- CRISPR/Cas9 and Gal4/UAS Combination for Cell-Specific Gene Inactivation -- Crispr/Cas9-Mediated Knockin Approaches in Zebrafish -- References -- Dissecting the Role of Synaptic Proteins with CRISPR -- Introduction -- Genome Editing Using CRISPR/Cas9 -- Practical Considerations for the Use of CRISPR/Cas9.
The Use of CRISPR/Cas9 in Neurons: Proof of Concept -- Conclusions and Future Perspectives -- References -- Recurrently Breaking Genes in Neural Progenitors: Potential Roles of DNA Breaks in Neuronal Function, Degeneration and Cancer -- References -- Neuroscience Research Using Non-human Primate Models and Genome Editing -- Introduction -- Characteristics of the Common Marmoset -- Advantages of Using Common Marmosets for Biomedical Research -- Transgenic Techniques and Genome Editing Technology for Marmoset Research -- Future Perspectives -- References -- Multiscale Genome Engineering: Genome-Wide Screens and Targeted Approaches -- Introduction -- Top-Down Approaches Using Genome-Wide CRISPR Screens -- Bottom-Up Approaches Using Exome Sequencing in Autism -- References -- Using Genome Engineering to Understand Huntingtonś Disease -- Huntington ́Disease -- Gene Editing Enzymes -- Uses for Gene Editing to Understand Human Diseases -- Gene Editing In Vivo to Treat Genetic Diseases -- Conclusion -- References -- Therapeutic Gene Editing in Muscles and Muscle Stem Cells -- Duchenne Muscular Dystrophy -- Current Gene-Targeted Therapeutic Strategies for DMD -- Challenges for Therapeutic Exon Skipping and Microdystrophin Delivery Strategies -- Gene-Editing Approaches to Restore Dystrophin Function in DMD -- Remaining Challenges for Therapeutic Development of DMD-CRISPR -- Challenges of DMD-CRISPR Delivery -- Potential Immune Response to Restored Dystrophin Protein -- Pre-existing and Acquired Immunity to Cas9 -- Assessing Mutagenic Events at On-Target and Off-Target Sites -- Enabling HR for Precise Repair of Dmd -- Gene-Editing Therapy in Combination with AONs or Microdystrophin -- Possible Application of CRISPR-mediated gene editing Strategies in Other Diseases -- Conclusions and Perspective -- References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Zhang, Feng.
Gage, Fred.
Print version: Jaenisch, Rudolf Genome Editing in Neurosciences Cham : Springer International Publishing AG,c2017 9783319601915
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422738 Click to View
language English
format eBook
author Jaenisch, Rudolf.
spellingShingle Jaenisch, Rudolf.
Genome Editing in Neurosciences.
Research and Perspectives in Neurosciences Series
Intro -- Preface -- Contents -- List of Contributors -- In Vitro Modeling of Complex Neurological Diseases -- Introduction -- Induced Pluripotent Stem Cells to Model Complex Diseases -- Gene Editing to Generate Genetically Controlled Disease Models -- Functional Role of GWAS-Identified Risk Variants in Complex Disease -- Epigenomic Signatures to Prioritize GWAS-Identified Risk Variants -- Functional Analysis of Parkinsonś Disease-Associated Risk Variants -- Identification of Parkinsonś Disease-Associated Risk Variants in Brain-Specific Enhancer Elements -- Allele-Specific Gene Expression as a Robust Read-Out to Analyze Cis-Regulatory Effects -- Functional Analysis of Parkinsonś-Associated Risk Variants -- Mechanistic Study of Sporadic Diseases: Conclusions -- References -- Aquatic Model Organisms in Neurosciences: The Genome-Editing Revolution -- Introduction -- Zebrafish: With the CRiSPR-Cas9 System, Forward Genetic Screens Are Back Again -- Optimizing the Cripsr-Cas9 System in Transparent Marine Animals -- More and More Aquatic Model Organisms for Diversified Uses -- In Biomedical Research, Why and How Should We Use Aquatic Models to Study Diseases of the Nervous System? -- A Short Natural History of the Nervous System: Several Questions on Its Origin -- Conclusion -- References -- Genome-Wide Genetic Screening in the Mammalian CNS -- Introduction -- Genome-Wide Viral Library Preparation and Delivery -- Interpretation of Results -- Future Directions -- References -- CRISPR/Cas9-Mediated Knockin and Knockout in Zebrafish -- CRISPR/Cas9 and Gal4/UAS Combination for Cell-Specific Gene Inactivation -- Crispr/Cas9-Mediated Knockin Approaches in Zebrafish -- References -- Dissecting the Role of Synaptic Proteins with CRISPR -- Introduction -- Genome Editing Using CRISPR/Cas9 -- Practical Considerations for the Use of CRISPR/Cas9.
The Use of CRISPR/Cas9 in Neurons: Proof of Concept -- Conclusions and Future Perspectives -- References -- Recurrently Breaking Genes in Neural Progenitors: Potential Roles of DNA Breaks in Neuronal Function, Degeneration and Cancer -- References -- Neuroscience Research Using Non-human Primate Models and Genome Editing -- Introduction -- Characteristics of the Common Marmoset -- Advantages of Using Common Marmosets for Biomedical Research -- Transgenic Techniques and Genome Editing Technology for Marmoset Research -- Future Perspectives -- References -- Multiscale Genome Engineering: Genome-Wide Screens and Targeted Approaches -- Introduction -- Top-Down Approaches Using Genome-Wide CRISPR Screens -- Bottom-Up Approaches Using Exome Sequencing in Autism -- References -- Using Genome Engineering to Understand Huntingtonś Disease -- Huntington ́Disease -- Gene Editing Enzymes -- Uses for Gene Editing to Understand Human Diseases -- Gene Editing In Vivo to Treat Genetic Diseases -- Conclusion -- References -- Therapeutic Gene Editing in Muscles and Muscle Stem Cells -- Duchenne Muscular Dystrophy -- Current Gene-Targeted Therapeutic Strategies for DMD -- Challenges for Therapeutic Exon Skipping and Microdystrophin Delivery Strategies -- Gene-Editing Approaches to Restore Dystrophin Function in DMD -- Remaining Challenges for Therapeutic Development of DMD-CRISPR -- Challenges of DMD-CRISPR Delivery -- Potential Immune Response to Restored Dystrophin Protein -- Pre-existing and Acquired Immunity to Cas9 -- Assessing Mutagenic Events at On-Target and Off-Target Sites -- Enabling HR for Precise Repair of Dmd -- Gene-Editing Therapy in Combination with AONs or Microdystrophin -- Possible Application of CRISPR-mediated gene editing Strategies in Other Diseases -- Conclusions and Perspective -- References.
author_facet Jaenisch, Rudolf.
Zhang, Feng.
Gage, Fred.
author_variant r j rj
author2 Zhang, Feng.
Gage, Fred.
author2_variant f z fz
f g fg
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Jaenisch, Rudolf.
title Genome Editing in Neurosciences.
title_full Genome Editing in Neurosciences.
title_fullStr Genome Editing in Neurosciences.
title_full_unstemmed Genome Editing in Neurosciences.
title_auth Genome Editing in Neurosciences.
title_new Genome Editing in Neurosciences.
title_sort genome editing in neurosciences.
series Research and Perspectives in Neurosciences Series
series2 Research and Perspectives in Neurosciences Series
publisher Springer International Publishing AG,
publishDate 2017
physical 1 online resource (129 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- List of Contributors -- In Vitro Modeling of Complex Neurological Diseases -- Introduction -- Induced Pluripotent Stem Cells to Model Complex Diseases -- Gene Editing to Generate Genetically Controlled Disease Models -- Functional Role of GWAS-Identified Risk Variants in Complex Disease -- Epigenomic Signatures to Prioritize GWAS-Identified Risk Variants -- Functional Analysis of Parkinsonś Disease-Associated Risk Variants -- Identification of Parkinsonś Disease-Associated Risk Variants in Brain-Specific Enhancer Elements -- Allele-Specific Gene Expression as a Robust Read-Out to Analyze Cis-Regulatory Effects -- Functional Analysis of Parkinsonś-Associated Risk Variants -- Mechanistic Study of Sporadic Diseases: Conclusions -- References -- Aquatic Model Organisms in Neurosciences: The Genome-Editing Revolution -- Introduction -- Zebrafish: With the CRiSPR-Cas9 System, Forward Genetic Screens Are Back Again -- Optimizing the Cripsr-Cas9 System in Transparent Marine Animals -- More and More Aquatic Model Organisms for Diversified Uses -- In Biomedical Research, Why and How Should We Use Aquatic Models to Study Diseases of the Nervous System? -- A Short Natural History of the Nervous System: Several Questions on Its Origin -- Conclusion -- References -- Genome-Wide Genetic Screening in the Mammalian CNS -- Introduction -- Genome-Wide Viral Library Preparation and Delivery -- Interpretation of Results -- Future Directions -- References -- CRISPR/Cas9-Mediated Knockin and Knockout in Zebrafish -- CRISPR/Cas9 and Gal4/UAS Combination for Cell-Specific Gene Inactivation -- Crispr/Cas9-Mediated Knockin Approaches in Zebrafish -- References -- Dissecting the Role of Synaptic Proteins with CRISPR -- Introduction -- Genome Editing Using CRISPR/Cas9 -- Practical Considerations for the Use of CRISPR/Cas9.
The Use of CRISPR/Cas9 in Neurons: Proof of Concept -- Conclusions and Future Perspectives -- References -- Recurrently Breaking Genes in Neural Progenitors: Potential Roles of DNA Breaks in Neuronal Function, Degeneration and Cancer -- References -- Neuroscience Research Using Non-human Primate Models and Genome Editing -- Introduction -- Characteristics of the Common Marmoset -- Advantages of Using Common Marmosets for Biomedical Research -- Transgenic Techniques and Genome Editing Technology for Marmoset Research -- Future Perspectives -- References -- Multiscale Genome Engineering: Genome-Wide Screens and Targeted Approaches -- Introduction -- Top-Down Approaches Using Genome-Wide CRISPR Screens -- Bottom-Up Approaches Using Exome Sequencing in Autism -- References -- Using Genome Engineering to Understand Huntingtonś Disease -- Huntington ́Disease -- Gene Editing Enzymes -- Uses for Gene Editing to Understand Human Diseases -- Gene Editing In Vivo to Treat Genetic Diseases -- Conclusion -- References -- Therapeutic Gene Editing in Muscles and Muscle Stem Cells -- Duchenne Muscular Dystrophy -- Current Gene-Targeted Therapeutic Strategies for DMD -- Challenges for Therapeutic Exon Skipping and Microdystrophin Delivery Strategies -- Gene-Editing Approaches to Restore Dystrophin Function in DMD -- Remaining Challenges for Therapeutic Development of DMD-CRISPR -- Challenges of DMD-CRISPR Delivery -- Potential Immune Response to Restored Dystrophin Protein -- Pre-existing and Acquired Immunity to Cas9 -- Assessing Mutagenic Events at On-Target and Off-Target Sites -- Enabling HR for Precise Repair of Dmd -- Gene-Editing Therapy in Combination with AONs or Microdystrophin -- Possible Application of CRISPR-mediated gene editing Strategies in Other Diseases -- Conclusions and Perspective -- References.
isbn 9783319601922
9783319601915
callnumber-first R - Medicine
callnumber-subject RB - Pathology
callnumber-label RB155-155
callnumber-sort RB 3155 3155.8
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422738
illustrated Not Illustrated
dewey-hundreds 600 - Technology
dewey-tens 610 - Medicine & health
dewey-ones 616 - Diseases
dewey-full 616.80442
dewey-sort 3616.80442
dewey-raw 616.80442
dewey-search 616.80442
oclc_num 1004664421
work_keys_str_mv AT jaenischrudolf genomeeditinginneurosciences
AT zhangfeng genomeeditinginneurosciences
AT gagefred genomeeditinginneurosciences
status_str n
ids_txt_mv (MiAaPQ)5006422738
(Au-PeEL)EBL6422738
(OCoLC)1004664421
carrierType_str_mv cr
hierarchy_parent_title Research and Perspectives in Neurosciences Series
is_hierarchy_title Genome Editing in Neurosciences.
container_title Research and Perspectives in Neurosciences Series
author2_original_writing_str_mv noLinkedField
noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331058907185152
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05377nam a22004453i 4500</leader><controlfield tag="001">5006422738</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073837.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2017 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319601922</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783319601915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006422738</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6422738</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1004664421</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">RB155-155.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">616.80442</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jaenisch, Rudolf.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genome Editing in Neurosciences.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (129 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Research and Perspectives in Neurosciences Series</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- List of Contributors -- In Vitro Modeling of Complex Neurological Diseases -- Introduction -- Induced Pluripotent Stem Cells to Model Complex Diseases -- Gene Editing to Generate Genetically Controlled Disease Models -- Functional Role of GWAS-Identified Risk Variants in Complex Disease -- Epigenomic Signatures to Prioritize GWAS-Identified Risk Variants -- Functional Analysis of Parkinsonś Disease-Associated Risk Variants -- Identification of Parkinsonś Disease-Associated Risk Variants in Brain-Specific Enhancer Elements -- Allele-Specific Gene Expression as a Robust Read-Out to Analyze Cis-Regulatory Effects -- Functional Analysis of Parkinsonś-Associated Risk Variants -- Mechanistic Study of Sporadic Diseases: Conclusions -- References -- Aquatic Model Organisms in Neurosciences: The Genome-Editing Revolution -- Introduction -- Zebrafish: With the CRiSPR-Cas9 System, Forward Genetic Screens Are Back Again -- Optimizing the Cripsr-Cas9 System in Transparent Marine Animals -- More and More Aquatic Model Organisms for Diversified Uses -- In Biomedical Research, Why and How Should We Use Aquatic Models to Study Diseases of the Nervous System? -- A Short Natural History of the Nervous System: Several Questions on Its Origin -- Conclusion -- References -- Genome-Wide Genetic Screening in the Mammalian CNS -- Introduction -- Genome-Wide Viral Library Preparation and Delivery -- Interpretation of Results -- Future Directions -- References -- CRISPR/Cas9-Mediated Knockin and Knockout in Zebrafish -- CRISPR/Cas9 and Gal4/UAS Combination for Cell-Specific Gene Inactivation -- Crispr/Cas9-Mediated Knockin Approaches in Zebrafish -- References -- Dissecting the Role of Synaptic Proteins with CRISPR -- Introduction -- Genome Editing Using CRISPR/Cas9 -- Practical Considerations for the Use of CRISPR/Cas9.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The Use of CRISPR/Cas9 in Neurons: Proof of Concept -- Conclusions and Future Perspectives -- References -- Recurrently Breaking Genes in Neural Progenitors: Potential Roles of DNA Breaks in Neuronal Function, Degeneration and Cancer -- References -- Neuroscience Research Using Non-human Primate Models and Genome Editing -- Introduction -- Characteristics of the Common Marmoset -- Advantages of Using Common Marmosets for Biomedical Research -- Transgenic Techniques and Genome Editing Technology for Marmoset Research -- Future Perspectives -- References -- Multiscale Genome Engineering: Genome-Wide Screens and Targeted Approaches -- Introduction -- Top-Down Approaches Using Genome-Wide CRISPR Screens -- Bottom-Up Approaches Using Exome Sequencing in Autism -- References -- Using Genome Engineering to Understand Huntingtonś Disease -- Huntington ́Disease -- Gene Editing Enzymes -- Uses for Gene Editing to Understand Human Diseases -- Gene Editing In Vivo to Treat Genetic Diseases -- Conclusion -- References -- Therapeutic Gene Editing in Muscles and Muscle Stem Cells -- Duchenne Muscular Dystrophy -- Current Gene-Targeted Therapeutic Strategies for DMD -- Challenges for Therapeutic Exon Skipping and Microdystrophin Delivery Strategies -- Gene-Editing Approaches to Restore Dystrophin Function in DMD -- Remaining Challenges for Therapeutic Development of DMD-CRISPR -- Challenges of DMD-CRISPR Delivery -- Potential Immune Response to Restored Dystrophin Protein -- Pre-existing and Acquired Immunity to Cas9 -- Assessing Mutagenic Events at On-Target and Off-Target Sites -- Enabling HR for Precise Repair of Dmd -- Gene-Editing Therapy in Combination with AONs or Microdystrophin -- Possible Application of CRISPR-mediated gene editing Strategies in Other Diseases -- Conclusions and Perspective -- References.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Feng.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gage, Fred.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Jaenisch, Rudolf</subfield><subfield code="t">Genome Editing in Neurosciences</subfield><subfield code="d">Cham : Springer International Publishing AG,c2017</subfield><subfield code="z">9783319601915</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Research and Perspectives in Neurosciences Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422738</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>