Perspectives on European Earthquake Engineering and Seismology : : Volume 2.

Saved in:
Bibliographic Details
Superior document:Geotechnical, Geological and Earthquake Engineering Series ; v.39
:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2015.
©2015.
Year of Publication:2015
Edition:1st ed.
Language:English
Series:Geotechnical, Geological and Earthquake Engineering Series
Online Access:
Physical Description:1 online resource (458 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006422636
ctrlnum (MiAaPQ)5006422636
(Au-PeEL)EBL6422636
(OCoLC)919938559
collection bib_alma
record_format marc
spelling Ansal, Atilla.
Perspectives on European Earthquake Engineering and Seismology : Volume 2.
1st ed.
Cham : Springer International Publishing AG, 2015.
©2015.
1 online resource (458 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Geotechnical, Geological and Earthquake Engineering Series ; v.39
Intro -- Preface -- Contents -- Chapter 1: Supershear Earthquake Ruptures - Theory, Methods, Laboratory Experiments and Fault Superhighways: An Update -- 1.1 Introduction -- 1.2 Theory -- 1.3 Seismic Data Analysis -- 1.4 A Case Study of a Supershear Earthquake -- 1.4.1 The 2001 Mw 7.8 Kunlun, Tibet Earthquake -- 1.5 Conditions Necessary for Supershear Rupture -- 1.6 Laboratory Experiments -- 1.7 Potential Supershear Earthquake Hazards -- 1.7.1 The Red River Fault, Vietnam/China -- 1.7.2 The Sagaing Fault, Burma -- 1.8 Discussion -- 1.9 Future Necessary Investigations -- 1.10 Conclusions -- References -- Chapter 2: Civil Protection Achievements and Critical Issues in Seismology and Earthquake Engineering Research -- 2.1 Introduction -- 2.2 Roles and Responsibilities in the Decision-Making Process -- 2.2.1 Scientists and Decision-Makers in the Risk Management -- 2.2.2 Other Actors in the Decision Process -- 2.3 Civil Protection and Science -- 2.3.1 Civil Protection Procedures -- 2.3.2 Scientific Products for Civil Protection -- 2.3.3 The Italian National Civil Protection System -- 2.4 How Science Contributes to Civil Protection -- 2.4.1 Permanent (i) and Finalized Research Activities (ii) for Civil Protection - The Competence Centres -- 2.4.1.1 INGV -- ``A-Type ́́Activities -- ``B-Type ́́Activities -- CPS - Centre of Seismic Hazard -- CAT - Tsunami Alert Centre -- ``C-Type ́́Activities -- 2.4.1.2 ReLUIS -- 2.4.1.3 EUCENTRE -- 2.4.2 Permanent Commissions - The Major Risks Commission -- 2.4.3 Commissions on Specific Subjects -- 2.4.3.1 ICEF - International Commission on Earthquake Forecasting -- 2.4.3.2 ICHESE - International Commission on Hydrocarbon Exploration and Seismicity in the Emilia Region -- 2.4.4 Research Funded by Other Subjects -- 2.4.4.1 SYNER-G -- 2.4.4.2 REAKT -- 2.4.4.3 SHARE -- 2.4.5 Free Research Works -- 2.5 Conclusion.
References -- Chapter 3: Earthquake Risk Assessment: Certitudes, Fallacies, Uncertainties and the Quest for Soundness -- 3.1 Introduction -- 3.2 Modelling, Models and Modellers -- 3.2.1 Epistemology of Models -- 3.2.2 Data: Blessing or Curse -- 3.2.3 Modeller: Sisyphus or Prometheus -- 3.2.4 Models: Truth or Heuristic Machines -- 3.3 Risk, Uncertainties and Decision-Making -- 3.4 Taxonomy of Elements at Risk -- 3.5 Intensity Measures -- 3.6 Fragility Curves and Vulnerability -- 3.7 Risk Assessment -- 3.7.1 Probabilistic, Deterministic and the Quest of Reasonable -- 3.7.2 Spatial Correlation -- 3.7.3 Site Effects -- 3.7.4 Time Dependent Risk Assessment -- 3.7.5 Performance Indicators and Resilience -- 3.7.6 Margin of Confidence or Conservatism? -- 3.8 Damage Assessment: Subjectivity and Ineffectiveness in the Quest of the Reasonable -- 3.8.1 Background Information and Data -- 3.8.2 Physical Damages and Losses -- 3.8.3 Discussing the Differences -- 3.9 Conclusive Remarks -- References -- Chapter 4: Variability and Uncertainty in Empirical Ground-Motion Prediction for Probabilistic Hazard and Risk Analyses -- 4.1 Introduction -- 4.2 Objective of Ground-Motion Prediction -- 4.3 Impact of Bias in Seismic Hazard and Risk -- 4.3.1 Probabilistic Seismic Hazard Analysis -- 4.3.2 Probabilistic Seismic Risk Analysis -- 4.4 Components of Uncertainty -- 4.4.1 Nature of Uncertainty -- 4.4.2 Apparent Randomness - Simplified Models -- 4.4.3 Chaotic Randomness - Bouc-Wen Example -- 4.4.4 Randomness Represented by Ground-Motion Models -- 4.5 Discrete Random Fields for Spatial Risk Analysis -- 4.6 Conclusions -- References -- Chapter 5: Seismic Code Developments for Steel and Composite Structures -- 5.1 Introduction -- 5.2 Behaviour Factors -- 5.3 Local Ductility -- 5.3.1 Steel Sections -- 5.3.2 Composite Sections -- 5.4 Capacity Design Requirements.
5.4.1 Moment Frames -- 5.4.2 Braced Frames -- 5.4.3 Material Considerations -- 5.5 Lateral Over-Strength -- 5.5.1 Stability and Drift Implications -- 5.5.2 Influence of Design Idealisations -- 5.6 Connection Design -- 5.6.1 Steel Moment Connections -- 5.6.2 Composite Moment Connections -- 5.6.3 Bracing Connections -- 5.7 Concluding Remarks -- References -- Chapter 6: Seismic Analyses and Design of Foundation Soil Structure Interaction -- 6.1 Introduction -- 6.2 Soil Structure Interaction Modelling -- 6.2.1 Global SSI Model for Piled Foundations -- 6.2.2 Substructure Model for Piled Foundations -- 6.3 Kinematic Interaction Motion -- 6.4 Conclusions -- References -- Chapter 7: Performance-Based Seismic Design and Assessment of Bridges -- 7.1 Introduction -- 7.2 Overview of PBD Methods for Bridges -- 7.2.1 Type of Analysis -- 7.2.2 Definition of Seismic Input -- 7.2.3 Stiffness of Dissipating Zones -- 7.2.4 Number of Directly Controlled Design Parameters -- 7.2.5 Number of Iterations Required -- 7.3 A PBD Procedure Based on Elastic Analysis -- 7.3.1 Description of the Procedure -- 7.3.2 Application of the Procedure -- 7.3.2.1 Description of Studied Bridge -- 7.3.2.2 `Standard ́Direct Displacement-Based Design (DDBD) -- 7.3.2.3 Modal Direct Displacement-Based Design (MDDBD) -- 7.4 A PBD Procedure Based on Inelastic Analysis -- 7.4.1 Description of the Procedure -- 7.5 Seismic Assessment of Bridges -- 7.5.1 Brief Overview of Available Assessment Procedures -- 7.5.2 Assessment of the Bridge Designed to the Displacement-Based Procedure -- 7.6 Closing Remarks -- References -- Chapter 8: An Algorithm to Justify the Design of Single Story Precast Structures -- 8.1 Introduction -- 8.2 Basic Structural Features Observed in the Field and Basic Features of the Current Design Practice -- 8.3 Why Justification of Code Based Design Procedure Is Needed?.
8.4 Selection of Partially Code Compatible Records -- 8.5 Proposed Algorithm -- 8.6 Over Strength and Lateral Load Reduction Factors -- 8.7 Capacity Curves -- 8.8 Numerical Examples -- 8.9 Conclusions -- References -- Chapter 9: Developments in Seismic Design of Tall Buildings: Preliminary Design of Coupled Core Wall Systems -- 9.1 Introduction -- 9.2 Preliminary Design Issues -- 9.3 Capacity and Ductility Demand Estimation Tools for Preliminary Design of Coupled Core Wall Systems -- 9.3.1 A Capacity Estimation Tool for Coupled Core Walls -- 9.3.2 A Ductility Demand Estimation Tool for Coupled Core Walls -- 9.4 Evaluation of Capacity and Ductility Demand Estimation Tools for Preliminary Design of Coupled Core Wall Systems -- 9.5 Concluding Remarks -- References -- Chapter 10: Seismic Response of Underground Lifeline Systems -- 10.1 Introduction -- 10.2 Pipeline Properties and Preventive Maintenance -- 10.3 Field Observations of Pipeline Damage and Ground Deformations -- 10.4 Pipelines and Fault Crossings -- 10.5 Conclusions -- References -- Chapter 11: Seismic Performance of Historical Masonry Structures Through Pushover and Nonlinear Dynamic Analyses -- 11.1 Introduction -- 11.2 Seismic Performance-Based Assessment Through Nonlinear Static and Dynamic Analyses -- 11.3 Pros and Cons of Nonlinear Static and Dynamic Analyses -- 11.4 Use of Proper Orthogonal Decomposition (POD) for the PBA -- 11.5 Multiscale Approach for the Definition of PLs Thresholds -- 11.6 Computation of the Seismic Input Compatible with Each PL -- 11.7 Conclusions -- References -- Chapter 12: Developments in Ground Motion Predictive Models and Accelerometric Data Archiving in the Broader European Region -- 12.1 Introduction -- 12.2 Evolution of Major Strong-Motion Databases in the Broader Europe -- 12.3 Ground-Motion Prediction Equations (GMPES) in the Broader European Region.
12.4 Implications of Using Local and Global GMPES from Broader Europe in Seismic Hazard -- 12.5 Conclusions -- References -- Chapter 13: Towards the ``Ultimate Earthquake-Proof ́́Building: Development of an Integrated Low-Damage System -- 13.1 Introduction -- 13.2 The Canterbury Earthquake Sequence: A Reality Check for Current Performance-Based Earthquake Engineering -- 13.3 Raising the Bar to Meet Societal Expectation: From Life-Safety to Damage Control and Holistic Approach -- 13.4 The Next Generation of Low-Damage Seismic Resisting Systems -- 13.5 Reparability of the Weakest Link of the Chain: ``PlugandPlay ́́Replaceable Dissipaters -- 13.6 Low-Damage Solution for Multi-storey Timber Buildings: the Pres-Lam System -- 13.7 Controlling and Reducing the Damage to the Floor-Diaphragm -- 13.8 Low-Damage Solutions for Non-structural Elements -- 13.9 First Prototype Test Building with Integrated Low-Damage Solutions -- 13.10 Towards an Integrated Structure-Foundation Performance-Based Design -- 13.11 On Site Implementation of Low-Damage PRESSS and Pres-Lam Technology -- 13.12 Conclusions -- References -- Chapter 14: Archive of Historical Earthquake Data for the European-Mediterranean Area -- 14.1 Introduction -- 14.2 Content of the Archive -- 14.3 Use and Potential of AHEAD -- 14.4 Long-Term Plan -- 14.5 Conclusions -- References -- Chapter 15: A Review and Some New Issues on the Theory of the H/V Technique for Ambient Vibrations -- 15.1 Introduction -- 15.2 A Short Review on the H/V Theory -- 15.2.1 The H/V Origins: Body-Wave Based Theories -- 15.2.2 The Role of the Surface Waves -- 15.2.3 The Sources ́Role and the Full-Wavefield -- 15.2.4 A Different Point of View: The Diffuse Wavefield -- 15.2.5 Current Research Branches -- 15.3 Comparison Between the DSS and the DFA Models -- 15.3.1 The DSS Model -- 15.3.2 The DFA Model -- 15.3.3 Comparison.
15.4 A Mention to the Most Recent Results in H/V Modelling.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Print version: Ansal, Atilla Perspectives on European Earthquake Engineering and Seismology Cham : Springer International Publishing AG,c2015 9783319169637
ProQuest (Firm)
Geotechnical, Geological and Earthquake Engineering Series
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422636 Click to View
language English
format eBook
author Ansal, Atilla.
spellingShingle Ansal, Atilla.
Perspectives on European Earthquake Engineering and Seismology : Volume 2.
Geotechnical, Geological and Earthquake Engineering Series ;
Intro -- Preface -- Contents -- Chapter 1: Supershear Earthquake Ruptures - Theory, Methods, Laboratory Experiments and Fault Superhighways: An Update -- 1.1 Introduction -- 1.2 Theory -- 1.3 Seismic Data Analysis -- 1.4 A Case Study of a Supershear Earthquake -- 1.4.1 The 2001 Mw 7.8 Kunlun, Tibet Earthquake -- 1.5 Conditions Necessary for Supershear Rupture -- 1.6 Laboratory Experiments -- 1.7 Potential Supershear Earthquake Hazards -- 1.7.1 The Red River Fault, Vietnam/China -- 1.7.2 The Sagaing Fault, Burma -- 1.8 Discussion -- 1.9 Future Necessary Investigations -- 1.10 Conclusions -- References -- Chapter 2: Civil Protection Achievements and Critical Issues in Seismology and Earthquake Engineering Research -- 2.1 Introduction -- 2.2 Roles and Responsibilities in the Decision-Making Process -- 2.2.1 Scientists and Decision-Makers in the Risk Management -- 2.2.2 Other Actors in the Decision Process -- 2.3 Civil Protection and Science -- 2.3.1 Civil Protection Procedures -- 2.3.2 Scientific Products for Civil Protection -- 2.3.3 The Italian National Civil Protection System -- 2.4 How Science Contributes to Civil Protection -- 2.4.1 Permanent (i) and Finalized Research Activities (ii) for Civil Protection - The Competence Centres -- 2.4.1.1 INGV -- ``A-Type ́́Activities -- ``B-Type ́́Activities -- CPS - Centre of Seismic Hazard -- CAT - Tsunami Alert Centre -- ``C-Type ́́Activities -- 2.4.1.2 ReLUIS -- 2.4.1.3 EUCENTRE -- 2.4.2 Permanent Commissions - The Major Risks Commission -- 2.4.3 Commissions on Specific Subjects -- 2.4.3.1 ICEF - International Commission on Earthquake Forecasting -- 2.4.3.2 ICHESE - International Commission on Hydrocarbon Exploration and Seismicity in the Emilia Region -- 2.4.4 Research Funded by Other Subjects -- 2.4.4.1 SYNER-G -- 2.4.4.2 REAKT -- 2.4.4.3 SHARE -- 2.4.5 Free Research Works -- 2.5 Conclusion.
References -- Chapter 3: Earthquake Risk Assessment: Certitudes, Fallacies, Uncertainties and the Quest for Soundness -- 3.1 Introduction -- 3.2 Modelling, Models and Modellers -- 3.2.1 Epistemology of Models -- 3.2.2 Data: Blessing or Curse -- 3.2.3 Modeller: Sisyphus or Prometheus -- 3.2.4 Models: Truth or Heuristic Machines -- 3.3 Risk, Uncertainties and Decision-Making -- 3.4 Taxonomy of Elements at Risk -- 3.5 Intensity Measures -- 3.6 Fragility Curves and Vulnerability -- 3.7 Risk Assessment -- 3.7.1 Probabilistic, Deterministic and the Quest of Reasonable -- 3.7.2 Spatial Correlation -- 3.7.3 Site Effects -- 3.7.4 Time Dependent Risk Assessment -- 3.7.5 Performance Indicators and Resilience -- 3.7.6 Margin of Confidence or Conservatism? -- 3.8 Damage Assessment: Subjectivity and Ineffectiveness in the Quest of the Reasonable -- 3.8.1 Background Information and Data -- 3.8.2 Physical Damages and Losses -- 3.8.3 Discussing the Differences -- 3.9 Conclusive Remarks -- References -- Chapter 4: Variability and Uncertainty in Empirical Ground-Motion Prediction for Probabilistic Hazard and Risk Analyses -- 4.1 Introduction -- 4.2 Objective of Ground-Motion Prediction -- 4.3 Impact of Bias in Seismic Hazard and Risk -- 4.3.1 Probabilistic Seismic Hazard Analysis -- 4.3.2 Probabilistic Seismic Risk Analysis -- 4.4 Components of Uncertainty -- 4.4.1 Nature of Uncertainty -- 4.4.2 Apparent Randomness - Simplified Models -- 4.4.3 Chaotic Randomness - Bouc-Wen Example -- 4.4.4 Randomness Represented by Ground-Motion Models -- 4.5 Discrete Random Fields for Spatial Risk Analysis -- 4.6 Conclusions -- References -- Chapter 5: Seismic Code Developments for Steel and Composite Structures -- 5.1 Introduction -- 5.2 Behaviour Factors -- 5.3 Local Ductility -- 5.3.1 Steel Sections -- 5.3.2 Composite Sections -- 5.4 Capacity Design Requirements.
5.4.1 Moment Frames -- 5.4.2 Braced Frames -- 5.4.3 Material Considerations -- 5.5 Lateral Over-Strength -- 5.5.1 Stability and Drift Implications -- 5.5.2 Influence of Design Idealisations -- 5.6 Connection Design -- 5.6.1 Steel Moment Connections -- 5.6.2 Composite Moment Connections -- 5.6.3 Bracing Connections -- 5.7 Concluding Remarks -- References -- Chapter 6: Seismic Analyses and Design of Foundation Soil Structure Interaction -- 6.1 Introduction -- 6.2 Soil Structure Interaction Modelling -- 6.2.1 Global SSI Model for Piled Foundations -- 6.2.2 Substructure Model for Piled Foundations -- 6.3 Kinematic Interaction Motion -- 6.4 Conclusions -- References -- Chapter 7: Performance-Based Seismic Design and Assessment of Bridges -- 7.1 Introduction -- 7.2 Overview of PBD Methods for Bridges -- 7.2.1 Type of Analysis -- 7.2.2 Definition of Seismic Input -- 7.2.3 Stiffness of Dissipating Zones -- 7.2.4 Number of Directly Controlled Design Parameters -- 7.2.5 Number of Iterations Required -- 7.3 A PBD Procedure Based on Elastic Analysis -- 7.3.1 Description of the Procedure -- 7.3.2 Application of the Procedure -- 7.3.2.1 Description of Studied Bridge -- 7.3.2.2 `Standard ́Direct Displacement-Based Design (DDBD) -- 7.3.2.3 Modal Direct Displacement-Based Design (MDDBD) -- 7.4 A PBD Procedure Based on Inelastic Analysis -- 7.4.1 Description of the Procedure -- 7.5 Seismic Assessment of Bridges -- 7.5.1 Brief Overview of Available Assessment Procedures -- 7.5.2 Assessment of the Bridge Designed to the Displacement-Based Procedure -- 7.6 Closing Remarks -- References -- Chapter 8: An Algorithm to Justify the Design of Single Story Precast Structures -- 8.1 Introduction -- 8.2 Basic Structural Features Observed in the Field and Basic Features of the Current Design Practice -- 8.3 Why Justification of Code Based Design Procedure Is Needed?.
8.4 Selection of Partially Code Compatible Records -- 8.5 Proposed Algorithm -- 8.6 Over Strength and Lateral Load Reduction Factors -- 8.7 Capacity Curves -- 8.8 Numerical Examples -- 8.9 Conclusions -- References -- Chapter 9: Developments in Seismic Design of Tall Buildings: Preliminary Design of Coupled Core Wall Systems -- 9.1 Introduction -- 9.2 Preliminary Design Issues -- 9.3 Capacity and Ductility Demand Estimation Tools for Preliminary Design of Coupled Core Wall Systems -- 9.3.1 A Capacity Estimation Tool for Coupled Core Walls -- 9.3.2 A Ductility Demand Estimation Tool for Coupled Core Walls -- 9.4 Evaluation of Capacity and Ductility Demand Estimation Tools for Preliminary Design of Coupled Core Wall Systems -- 9.5 Concluding Remarks -- References -- Chapter 10: Seismic Response of Underground Lifeline Systems -- 10.1 Introduction -- 10.2 Pipeline Properties and Preventive Maintenance -- 10.3 Field Observations of Pipeline Damage and Ground Deformations -- 10.4 Pipelines and Fault Crossings -- 10.5 Conclusions -- References -- Chapter 11: Seismic Performance of Historical Masonry Structures Through Pushover and Nonlinear Dynamic Analyses -- 11.1 Introduction -- 11.2 Seismic Performance-Based Assessment Through Nonlinear Static and Dynamic Analyses -- 11.3 Pros and Cons of Nonlinear Static and Dynamic Analyses -- 11.4 Use of Proper Orthogonal Decomposition (POD) for the PBA -- 11.5 Multiscale Approach for the Definition of PLs Thresholds -- 11.6 Computation of the Seismic Input Compatible with Each PL -- 11.7 Conclusions -- References -- Chapter 12: Developments in Ground Motion Predictive Models and Accelerometric Data Archiving in the Broader European Region -- 12.1 Introduction -- 12.2 Evolution of Major Strong-Motion Databases in the Broader Europe -- 12.3 Ground-Motion Prediction Equations (GMPES) in the Broader European Region.
12.4 Implications of Using Local and Global GMPES from Broader Europe in Seismic Hazard -- 12.5 Conclusions -- References -- Chapter 13: Towards the ``Ultimate Earthquake-Proof ́́Building: Development of an Integrated Low-Damage System -- 13.1 Introduction -- 13.2 The Canterbury Earthquake Sequence: A Reality Check for Current Performance-Based Earthquake Engineering -- 13.3 Raising the Bar to Meet Societal Expectation: From Life-Safety to Damage Control and Holistic Approach -- 13.4 The Next Generation of Low-Damage Seismic Resisting Systems -- 13.5 Reparability of the Weakest Link of the Chain: ``PlugandPlay ́́Replaceable Dissipaters -- 13.6 Low-Damage Solution for Multi-storey Timber Buildings: the Pres-Lam System -- 13.7 Controlling and Reducing the Damage to the Floor-Diaphragm -- 13.8 Low-Damage Solutions for Non-structural Elements -- 13.9 First Prototype Test Building with Integrated Low-Damage Solutions -- 13.10 Towards an Integrated Structure-Foundation Performance-Based Design -- 13.11 On Site Implementation of Low-Damage PRESSS and Pres-Lam Technology -- 13.12 Conclusions -- References -- Chapter 14: Archive of Historical Earthquake Data for the European-Mediterranean Area -- 14.1 Introduction -- 14.2 Content of the Archive -- 14.3 Use and Potential of AHEAD -- 14.4 Long-Term Plan -- 14.5 Conclusions -- References -- Chapter 15: A Review and Some New Issues on the Theory of the H/V Technique for Ambient Vibrations -- 15.1 Introduction -- 15.2 A Short Review on the H/V Theory -- 15.2.1 The H/V Origins: Body-Wave Based Theories -- 15.2.2 The Role of the Surface Waves -- 15.2.3 The Sources ́Role and the Full-Wavefield -- 15.2.4 A Different Point of View: The Diffuse Wavefield -- 15.2.5 Current Research Branches -- 15.3 Comparison Between the DSS and the DFA Models -- 15.3.1 The DSS Model -- 15.3.2 The DFA Model -- 15.3.3 Comparison.
15.4 A Mention to the Most Recent Results in H/V Modelling.
author_facet Ansal, Atilla.
author_variant a a aa
author_sort Ansal, Atilla.
title Perspectives on European Earthquake Engineering and Seismology : Volume 2.
title_sub Volume 2.
title_full Perspectives on European Earthquake Engineering and Seismology : Volume 2.
title_fullStr Perspectives on European Earthquake Engineering and Seismology : Volume 2.
title_full_unstemmed Perspectives on European Earthquake Engineering and Seismology : Volume 2.
title_auth Perspectives on European Earthquake Engineering and Seismology : Volume 2.
title_new Perspectives on European Earthquake Engineering and Seismology :
title_sort perspectives on european earthquake engineering and seismology : volume 2.
series Geotechnical, Geological and Earthquake Engineering Series ;
series2 Geotechnical, Geological and Earthquake Engineering Series ;
publisher Springer International Publishing AG,
publishDate 2015
physical 1 online resource (458 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- Chapter 1: Supershear Earthquake Ruptures - Theory, Methods, Laboratory Experiments and Fault Superhighways: An Update -- 1.1 Introduction -- 1.2 Theory -- 1.3 Seismic Data Analysis -- 1.4 A Case Study of a Supershear Earthquake -- 1.4.1 The 2001 Mw 7.8 Kunlun, Tibet Earthquake -- 1.5 Conditions Necessary for Supershear Rupture -- 1.6 Laboratory Experiments -- 1.7 Potential Supershear Earthquake Hazards -- 1.7.1 The Red River Fault, Vietnam/China -- 1.7.2 The Sagaing Fault, Burma -- 1.8 Discussion -- 1.9 Future Necessary Investigations -- 1.10 Conclusions -- References -- Chapter 2: Civil Protection Achievements and Critical Issues in Seismology and Earthquake Engineering Research -- 2.1 Introduction -- 2.2 Roles and Responsibilities in the Decision-Making Process -- 2.2.1 Scientists and Decision-Makers in the Risk Management -- 2.2.2 Other Actors in the Decision Process -- 2.3 Civil Protection and Science -- 2.3.1 Civil Protection Procedures -- 2.3.2 Scientific Products for Civil Protection -- 2.3.3 The Italian National Civil Protection System -- 2.4 How Science Contributes to Civil Protection -- 2.4.1 Permanent (i) and Finalized Research Activities (ii) for Civil Protection - The Competence Centres -- 2.4.1.1 INGV -- ``A-Type ́́Activities -- ``B-Type ́́Activities -- CPS - Centre of Seismic Hazard -- CAT - Tsunami Alert Centre -- ``C-Type ́́Activities -- 2.4.1.2 ReLUIS -- 2.4.1.3 EUCENTRE -- 2.4.2 Permanent Commissions - The Major Risks Commission -- 2.4.3 Commissions on Specific Subjects -- 2.4.3.1 ICEF - International Commission on Earthquake Forecasting -- 2.4.3.2 ICHESE - International Commission on Hydrocarbon Exploration and Seismicity in the Emilia Region -- 2.4.4 Research Funded by Other Subjects -- 2.4.4.1 SYNER-G -- 2.4.4.2 REAKT -- 2.4.4.3 SHARE -- 2.4.5 Free Research Works -- 2.5 Conclusion.
References -- Chapter 3: Earthquake Risk Assessment: Certitudes, Fallacies, Uncertainties and the Quest for Soundness -- 3.1 Introduction -- 3.2 Modelling, Models and Modellers -- 3.2.1 Epistemology of Models -- 3.2.2 Data: Blessing or Curse -- 3.2.3 Modeller: Sisyphus or Prometheus -- 3.2.4 Models: Truth or Heuristic Machines -- 3.3 Risk, Uncertainties and Decision-Making -- 3.4 Taxonomy of Elements at Risk -- 3.5 Intensity Measures -- 3.6 Fragility Curves and Vulnerability -- 3.7 Risk Assessment -- 3.7.1 Probabilistic, Deterministic and the Quest of Reasonable -- 3.7.2 Spatial Correlation -- 3.7.3 Site Effects -- 3.7.4 Time Dependent Risk Assessment -- 3.7.5 Performance Indicators and Resilience -- 3.7.6 Margin of Confidence or Conservatism? -- 3.8 Damage Assessment: Subjectivity and Ineffectiveness in the Quest of the Reasonable -- 3.8.1 Background Information and Data -- 3.8.2 Physical Damages and Losses -- 3.8.3 Discussing the Differences -- 3.9 Conclusive Remarks -- References -- Chapter 4: Variability and Uncertainty in Empirical Ground-Motion Prediction for Probabilistic Hazard and Risk Analyses -- 4.1 Introduction -- 4.2 Objective of Ground-Motion Prediction -- 4.3 Impact of Bias in Seismic Hazard and Risk -- 4.3.1 Probabilistic Seismic Hazard Analysis -- 4.3.2 Probabilistic Seismic Risk Analysis -- 4.4 Components of Uncertainty -- 4.4.1 Nature of Uncertainty -- 4.4.2 Apparent Randomness - Simplified Models -- 4.4.3 Chaotic Randomness - Bouc-Wen Example -- 4.4.4 Randomness Represented by Ground-Motion Models -- 4.5 Discrete Random Fields for Spatial Risk Analysis -- 4.6 Conclusions -- References -- Chapter 5: Seismic Code Developments for Steel and Composite Structures -- 5.1 Introduction -- 5.2 Behaviour Factors -- 5.3 Local Ductility -- 5.3.1 Steel Sections -- 5.3.2 Composite Sections -- 5.4 Capacity Design Requirements.
5.4.1 Moment Frames -- 5.4.2 Braced Frames -- 5.4.3 Material Considerations -- 5.5 Lateral Over-Strength -- 5.5.1 Stability and Drift Implications -- 5.5.2 Influence of Design Idealisations -- 5.6 Connection Design -- 5.6.1 Steel Moment Connections -- 5.6.2 Composite Moment Connections -- 5.6.3 Bracing Connections -- 5.7 Concluding Remarks -- References -- Chapter 6: Seismic Analyses and Design of Foundation Soil Structure Interaction -- 6.1 Introduction -- 6.2 Soil Structure Interaction Modelling -- 6.2.1 Global SSI Model for Piled Foundations -- 6.2.2 Substructure Model for Piled Foundations -- 6.3 Kinematic Interaction Motion -- 6.4 Conclusions -- References -- Chapter 7: Performance-Based Seismic Design and Assessment of Bridges -- 7.1 Introduction -- 7.2 Overview of PBD Methods for Bridges -- 7.2.1 Type of Analysis -- 7.2.2 Definition of Seismic Input -- 7.2.3 Stiffness of Dissipating Zones -- 7.2.4 Number of Directly Controlled Design Parameters -- 7.2.5 Number of Iterations Required -- 7.3 A PBD Procedure Based on Elastic Analysis -- 7.3.1 Description of the Procedure -- 7.3.2 Application of the Procedure -- 7.3.2.1 Description of Studied Bridge -- 7.3.2.2 `Standard ́Direct Displacement-Based Design (DDBD) -- 7.3.2.3 Modal Direct Displacement-Based Design (MDDBD) -- 7.4 A PBD Procedure Based on Inelastic Analysis -- 7.4.1 Description of the Procedure -- 7.5 Seismic Assessment of Bridges -- 7.5.1 Brief Overview of Available Assessment Procedures -- 7.5.2 Assessment of the Bridge Designed to the Displacement-Based Procedure -- 7.6 Closing Remarks -- References -- Chapter 8: An Algorithm to Justify the Design of Single Story Precast Structures -- 8.1 Introduction -- 8.2 Basic Structural Features Observed in the Field and Basic Features of the Current Design Practice -- 8.3 Why Justification of Code Based Design Procedure Is Needed?.
8.4 Selection of Partially Code Compatible Records -- 8.5 Proposed Algorithm -- 8.6 Over Strength and Lateral Load Reduction Factors -- 8.7 Capacity Curves -- 8.8 Numerical Examples -- 8.9 Conclusions -- References -- Chapter 9: Developments in Seismic Design of Tall Buildings: Preliminary Design of Coupled Core Wall Systems -- 9.1 Introduction -- 9.2 Preliminary Design Issues -- 9.3 Capacity and Ductility Demand Estimation Tools for Preliminary Design of Coupled Core Wall Systems -- 9.3.1 A Capacity Estimation Tool for Coupled Core Walls -- 9.3.2 A Ductility Demand Estimation Tool for Coupled Core Walls -- 9.4 Evaluation of Capacity and Ductility Demand Estimation Tools for Preliminary Design of Coupled Core Wall Systems -- 9.5 Concluding Remarks -- References -- Chapter 10: Seismic Response of Underground Lifeline Systems -- 10.1 Introduction -- 10.2 Pipeline Properties and Preventive Maintenance -- 10.3 Field Observations of Pipeline Damage and Ground Deformations -- 10.4 Pipelines and Fault Crossings -- 10.5 Conclusions -- References -- Chapter 11: Seismic Performance of Historical Masonry Structures Through Pushover and Nonlinear Dynamic Analyses -- 11.1 Introduction -- 11.2 Seismic Performance-Based Assessment Through Nonlinear Static and Dynamic Analyses -- 11.3 Pros and Cons of Nonlinear Static and Dynamic Analyses -- 11.4 Use of Proper Orthogonal Decomposition (POD) for the PBA -- 11.5 Multiscale Approach for the Definition of PLs Thresholds -- 11.6 Computation of the Seismic Input Compatible with Each PL -- 11.7 Conclusions -- References -- Chapter 12: Developments in Ground Motion Predictive Models and Accelerometric Data Archiving in the Broader European Region -- 12.1 Introduction -- 12.2 Evolution of Major Strong-Motion Databases in the Broader Europe -- 12.3 Ground-Motion Prediction Equations (GMPES) in the Broader European Region.
12.4 Implications of Using Local and Global GMPES from Broader Europe in Seismic Hazard -- 12.5 Conclusions -- References -- Chapter 13: Towards the ``Ultimate Earthquake-Proof ́́Building: Development of an Integrated Low-Damage System -- 13.1 Introduction -- 13.2 The Canterbury Earthquake Sequence: A Reality Check for Current Performance-Based Earthquake Engineering -- 13.3 Raising the Bar to Meet Societal Expectation: From Life-Safety to Damage Control and Holistic Approach -- 13.4 The Next Generation of Low-Damage Seismic Resisting Systems -- 13.5 Reparability of the Weakest Link of the Chain: ``PlugandPlay ́́Replaceable Dissipaters -- 13.6 Low-Damage Solution for Multi-storey Timber Buildings: the Pres-Lam System -- 13.7 Controlling and Reducing the Damage to the Floor-Diaphragm -- 13.8 Low-Damage Solutions for Non-structural Elements -- 13.9 First Prototype Test Building with Integrated Low-Damage Solutions -- 13.10 Towards an Integrated Structure-Foundation Performance-Based Design -- 13.11 On Site Implementation of Low-Damage PRESSS and Pres-Lam Technology -- 13.12 Conclusions -- References -- Chapter 14: Archive of Historical Earthquake Data for the European-Mediterranean Area -- 14.1 Introduction -- 14.2 Content of the Archive -- 14.3 Use and Potential of AHEAD -- 14.4 Long-Term Plan -- 14.5 Conclusions -- References -- Chapter 15: A Review and Some New Issues on the Theory of the H/V Technique for Ambient Vibrations -- 15.1 Introduction -- 15.2 A Short Review on the H/V Theory -- 15.2.1 The H/V Origins: Body-Wave Based Theories -- 15.2.2 The Role of the Surface Waves -- 15.2.3 The Sources ́Role and the Full-Wavefield -- 15.2.4 A Different Point of View: The Diffuse Wavefield -- 15.2.5 Current Research Branches -- 15.3 Comparison Between the DSS and the DFA Models -- 15.3.1 The DSS Model -- 15.3.2 The DFA Model -- 15.3.3 Comparison.
15.4 A Mention to the Most Recent Results in H/V Modelling.
isbn 9783319169644
9783319169637
callnumber-first T - Technology
callnumber-subject TA - General and Civil Engineering
callnumber-label TA703-705
callnumber-sort TA 3703 3705.4
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422636
illustrated Not Illustrated
dewey-hundreds 600 - Technology
dewey-tens 620 - Engineering
dewey-ones 624 - Civil engineering
dewey-full 624.1762
dewey-sort 3624.1762
dewey-raw 624.1762
dewey-search 624.1762
oclc_num 919938559
work_keys_str_mv AT ansalatilla perspectivesoneuropeanearthquakeengineeringandseismologyvolume2
status_str n
ids_txt_mv (MiAaPQ)5006422636
(Au-PeEL)EBL6422636
(OCoLC)919938559
carrierType_str_mv cr
hierarchy_parent_title Geotechnical, Geological and Earthquake Engineering Series ; v.39
is_hierarchy_title Perspectives on European Earthquake Engineering and Seismology : Volume 2.
container_title Geotechnical, Geological and Earthquake Engineering Series ; v.39
marc_error Info : No Determination made, defaulting to MARC8 --- [ 856 : z ]
_version_ 1792331058304253952
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11197nam a22004693i 4500</leader><controlfield tag="001">5006422636</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073837.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2015 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319169644</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783319169637</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006422636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6422636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)919938559</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA703-705.4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">624.1762</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ansal, Atilla.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perspectives on European Earthquake Engineering and Seismology :</subfield><subfield code="b">Volume 2.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2015.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2015.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (458 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Geotechnical, Geological and Earthquake Engineering Series ;</subfield><subfield code="v">v.39</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Chapter 1: Supershear Earthquake Ruptures - Theory, Methods, Laboratory Experiments and Fault Superhighways: An Update -- 1.1 Introduction -- 1.2 Theory -- 1.3 Seismic Data Analysis -- 1.4 A Case Study of a Supershear Earthquake -- 1.4.1 The 2001 Mw 7.8 Kunlun, Tibet Earthquake -- 1.5 Conditions Necessary for Supershear Rupture -- 1.6 Laboratory Experiments -- 1.7 Potential Supershear Earthquake Hazards -- 1.7.1 The Red River Fault, Vietnam/China -- 1.7.2 The Sagaing Fault, Burma -- 1.8 Discussion -- 1.9 Future Necessary Investigations -- 1.10 Conclusions -- References -- Chapter 2: Civil Protection Achievements and Critical Issues in Seismology and Earthquake Engineering Research -- 2.1 Introduction -- 2.2 Roles and Responsibilities in the Decision-Making Process -- 2.2.1 Scientists and Decision-Makers in the Risk Management -- 2.2.2 Other Actors in the Decision Process -- 2.3 Civil Protection and Science -- 2.3.1 Civil Protection Procedures -- 2.3.2 Scientific Products for Civil Protection -- 2.3.3 The Italian National Civil Protection System -- 2.4 How Science Contributes to Civil Protection -- 2.4.1 Permanent (i) and Finalized Research Activities (ii) for Civil Protection - The Competence Centres -- 2.4.1.1 INGV -- ``A-Type ́́Activities -- ``B-Type ́́Activities -- CPS - Centre of Seismic Hazard -- CAT - Tsunami Alert Centre -- ``C-Type ́́Activities -- 2.4.1.2 ReLUIS -- 2.4.1.3 EUCENTRE -- 2.4.2 Permanent Commissions - The Major Risks Commission -- 2.4.3 Commissions on Specific Subjects -- 2.4.3.1 ICEF - International Commission on Earthquake Forecasting -- 2.4.3.2 ICHESE - International Commission on Hydrocarbon Exploration and Seismicity in the Emilia Region -- 2.4.4 Research Funded by Other Subjects -- 2.4.4.1 SYNER-G -- 2.4.4.2 REAKT -- 2.4.4.3 SHARE -- 2.4.5 Free Research Works -- 2.5 Conclusion.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">References -- Chapter 3: Earthquake Risk Assessment: Certitudes, Fallacies, Uncertainties and the Quest for Soundness -- 3.1 Introduction -- 3.2 Modelling, Models and Modellers -- 3.2.1 Epistemology of Models -- 3.2.2 Data: Blessing or Curse -- 3.2.3 Modeller: Sisyphus or Prometheus -- 3.2.4 Models: Truth or Heuristic Machines -- 3.3 Risk, Uncertainties and Decision-Making -- 3.4 Taxonomy of Elements at Risk -- 3.5 Intensity Measures -- 3.6 Fragility Curves and Vulnerability -- 3.7 Risk Assessment -- 3.7.1 Probabilistic, Deterministic and the Quest of Reasonable -- 3.7.2 Spatial Correlation -- 3.7.3 Site Effects -- 3.7.4 Time Dependent Risk Assessment -- 3.7.5 Performance Indicators and Resilience -- 3.7.6 Margin of Confidence or Conservatism? -- 3.8 Damage Assessment: Subjectivity and Ineffectiveness in the Quest of the Reasonable -- 3.8.1 Background Information and Data -- 3.8.2 Physical Damages and Losses -- 3.8.3 Discussing the Differences -- 3.9 Conclusive Remarks -- References -- Chapter 4: Variability and Uncertainty in Empirical Ground-Motion Prediction for Probabilistic Hazard and Risk Analyses -- 4.1 Introduction -- 4.2 Objective of Ground-Motion Prediction -- 4.3 Impact of Bias in Seismic Hazard and Risk -- 4.3.1 Probabilistic Seismic Hazard Analysis -- 4.3.2 Probabilistic Seismic Risk Analysis -- 4.4 Components of Uncertainty -- 4.4.1 Nature of Uncertainty -- 4.4.2 Apparent Randomness - Simplified Models -- 4.4.3 Chaotic Randomness - Bouc-Wen Example -- 4.4.4 Randomness Represented by Ground-Motion Models -- 4.5 Discrete Random Fields for Spatial Risk Analysis -- 4.6 Conclusions -- References -- Chapter 5: Seismic Code Developments for Steel and Composite Structures -- 5.1 Introduction -- 5.2 Behaviour Factors -- 5.3 Local Ductility -- 5.3.1 Steel Sections -- 5.3.2 Composite Sections -- 5.4 Capacity Design Requirements.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4.1 Moment Frames -- 5.4.2 Braced Frames -- 5.4.3 Material Considerations -- 5.5 Lateral Over-Strength -- 5.5.1 Stability and Drift Implications -- 5.5.2 Influence of Design Idealisations -- 5.6 Connection Design -- 5.6.1 Steel Moment Connections -- 5.6.2 Composite Moment Connections -- 5.6.3 Bracing Connections -- 5.7 Concluding Remarks -- References -- Chapter 6: Seismic Analyses and Design of Foundation Soil Structure Interaction -- 6.1 Introduction -- 6.2 Soil Structure Interaction Modelling -- 6.2.1 Global SSI Model for Piled Foundations -- 6.2.2 Substructure Model for Piled Foundations -- 6.3 Kinematic Interaction Motion -- 6.4 Conclusions -- References -- Chapter 7: Performance-Based Seismic Design and Assessment of Bridges -- 7.1 Introduction -- 7.2 Overview of PBD Methods for Bridges -- 7.2.1 Type of Analysis -- 7.2.2 Definition of Seismic Input -- 7.2.3 Stiffness of Dissipating Zones -- 7.2.4 Number of Directly Controlled Design Parameters -- 7.2.5 Number of Iterations Required -- 7.3 A PBD Procedure Based on Elastic Analysis -- 7.3.1 Description of the Procedure -- 7.3.2 Application of the Procedure -- 7.3.2.1 Description of Studied Bridge -- 7.3.2.2 `Standard ́Direct Displacement-Based Design (DDBD) -- 7.3.2.3 Modal Direct Displacement-Based Design (MDDBD) -- 7.4 A PBD Procedure Based on Inelastic Analysis -- 7.4.1 Description of the Procedure -- 7.5 Seismic Assessment of Bridges -- 7.5.1 Brief Overview of Available Assessment Procedures -- 7.5.2 Assessment of the Bridge Designed to the Displacement-Based Procedure -- 7.6 Closing Remarks -- References -- Chapter 8: An Algorithm to Justify the Design of Single Story Precast Structures -- 8.1 Introduction -- 8.2 Basic Structural Features Observed in the Field and Basic Features of the Current Design Practice -- 8.3 Why Justification of Code Based Design Procedure Is Needed?.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.4 Selection of Partially Code Compatible Records -- 8.5 Proposed Algorithm -- 8.6 Over Strength and Lateral Load Reduction Factors -- 8.7 Capacity Curves -- 8.8 Numerical Examples -- 8.9 Conclusions -- References -- Chapter 9: Developments in Seismic Design of Tall Buildings: Preliminary Design of Coupled Core Wall Systems -- 9.1 Introduction -- 9.2 Preliminary Design Issues -- 9.3 Capacity and Ductility Demand Estimation Tools for Preliminary Design of Coupled Core Wall Systems -- 9.3.1 A Capacity Estimation Tool for Coupled Core Walls -- 9.3.2 A Ductility Demand Estimation Tool for Coupled Core Walls -- 9.4 Evaluation of Capacity and Ductility Demand Estimation Tools for Preliminary Design of Coupled Core Wall Systems -- 9.5 Concluding Remarks -- References -- Chapter 10: Seismic Response of Underground Lifeline Systems -- 10.1 Introduction -- 10.2 Pipeline Properties and Preventive Maintenance -- 10.3 Field Observations of Pipeline Damage and Ground Deformations -- 10.4 Pipelines and Fault Crossings -- 10.5 Conclusions -- References -- Chapter 11: Seismic Performance of Historical Masonry Structures Through Pushover and Nonlinear Dynamic Analyses -- 11.1 Introduction -- 11.2 Seismic Performance-Based Assessment Through Nonlinear Static and Dynamic Analyses -- 11.3 Pros and Cons of Nonlinear Static and Dynamic Analyses -- 11.4 Use of Proper Orthogonal Decomposition (POD) for the PBA -- 11.5 Multiscale Approach for the Definition of PLs Thresholds -- 11.6 Computation of the Seismic Input Compatible with Each PL -- 11.7 Conclusions -- References -- Chapter 12: Developments in Ground Motion Predictive Models and Accelerometric Data Archiving in the Broader European Region -- 12.1 Introduction -- 12.2 Evolution of Major Strong-Motion Databases in the Broader Europe -- 12.3 Ground-Motion Prediction Equations (GMPES) in the Broader European Region.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.4 Implications of Using Local and Global GMPES from Broader Europe in Seismic Hazard -- 12.5 Conclusions -- References -- Chapter 13: Towards the ``Ultimate Earthquake-Proof ́́Building: Development of an Integrated Low-Damage System -- 13.1 Introduction -- 13.2 The Canterbury Earthquake Sequence: A Reality Check for Current Performance-Based Earthquake Engineering -- 13.3 Raising the Bar to Meet Societal Expectation: From Life-Safety to Damage Control and Holistic Approach -- 13.4 The Next Generation of Low-Damage Seismic Resisting Systems -- 13.5 Reparability of the Weakest Link of the Chain: ``PlugandPlay ́́Replaceable Dissipaters -- 13.6 Low-Damage Solution for Multi-storey Timber Buildings: the Pres-Lam System -- 13.7 Controlling and Reducing the Damage to the Floor-Diaphragm -- 13.8 Low-Damage Solutions for Non-structural Elements -- 13.9 First Prototype Test Building with Integrated Low-Damage Solutions -- 13.10 Towards an Integrated Structure-Foundation Performance-Based Design -- 13.11 On Site Implementation of Low-Damage PRESSS and Pres-Lam Technology -- 13.12 Conclusions -- References -- Chapter 14: Archive of Historical Earthquake Data for the European-Mediterranean Area -- 14.1 Introduction -- 14.2 Content of the Archive -- 14.3 Use and Potential of AHEAD -- 14.4 Long-Term Plan -- 14.5 Conclusions -- References -- Chapter 15: A Review and Some New Issues on the Theory of the H/V Technique for Ambient Vibrations -- 15.1 Introduction -- 15.2 A Short Review on the H/V Theory -- 15.2.1 The H/V Origins: Body-Wave Based Theories -- 15.2.2 The Role of the Surface Waves -- 15.2.3 The Sources ́Role and the Full-Wavefield -- 15.2.4 A Different Point of View: The Diffuse Wavefield -- 15.2.5 Current Research Branches -- 15.3 Comparison Between the DSS and the DFA Models -- 15.3.1 The DSS Model -- 15.3.2 The DFA Model -- 15.3.3 Comparison.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">15.4 A Mention to the Most Recent Results in H/V Modelling.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ansal, Atilla</subfield><subfield code="t">Perspectives on European Earthquake Engineering and Seismology</subfield><subfield code="d">Cham : Springer International Publishing AG,c2015</subfield><subfield code="z">9783319169637</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Geotechnical, Geological and Earthquake Engineering Series</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422636</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>