Biomineralization : : From Molecular and Nano-Structural Analyses to Environmental Science.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2018.
©2018.
Year of Publication:2018
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (393 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Part I: Structure and Analysis of Biominerals
  • Chapter 1: On the Transition Temperature to Calcite and Cell Lengths for Various Biogenic Aragonites
  • 1.1 Introduction
  • 1.2 Materials and Methods
  • 1.3 Results and Discussion
  • References
  • Chapter 2: TEM Study of the Radular Teeth of the Chiton Acanthopleura japonica
  • 2.1 Introduction
  • 2.2 Materials and Methods
  • 2.3 Results and Discussion
  • References
  • Chapter 3: Experimental Cremation of Bone: Crystallite Size and Lattice Parameter Evolution
  • 3.1 Introduction
  • 3.2 Materials and Methods
  • 3.3 Results
  • 3.3.1 X-Ray Diffraction: 100 °C Intervals
  • 3.3.2 X-Ray Diffraction: 10 Min Intervals
  • 3.3.3 FTIR
  • 3.4 Discussion
  • References
  • Chapter 4: Effect of Carbonic Anhydrase Immobilized on Eggshell Membranes on Calcium Carbonate Crystallization In Vitro
  • 4.1 Introduction
  • 4.2 Material and Methods
  • 4.2.1 Carbonic Anhydrase (EC 4.2.1.1) Immobilization on ESM
  • 4.2.2 Crystallization Experiments
  • 4.3 Results
  • 4.3.1 ESM on Bottom of the Microbridge 24 H Incubation
  • 4.3.2 ESM on Top of the Microbridge Facing the Calcification Medium After 24 H of Incubation
  • 4.4 Discussion
  • References
  • Chapter 5: Proteomic Analysis of Venomous Fang Matrix Proteins of Protobothrops flavoviridis (Habu) Snake
  • 5.1 Introduction
  • 5.2 Materials and Methods
  • 5.2.1 Materials
  • 5.2.2 Isolation and Characterization of the Matrix Proteins from the Venomous Fang
  • 5.2.3 Proteome Analysis
  • 5.3 Results and Discussion
  • 5.3.1 Isolation and Characterization of the Matrix Proteins from P. flavoviridis Venomous Fangs
  • 5.3.2 Proteome Analysis of the Fang Matrix Proteins
  • References
  • Chapter 6: Characterization of Goldfish Scales by Vibrational Spectroscopic Analyses
  • 6.1 Introduction
  • 6.2 Materials and Methods
  • 6.3 Results and Discussion.
  • 6.3.1 Characterization of a Normal Scale from Goldfish by FTIR Spectra
  • 6.3.2 Characterization of Regenerating Scales from Goldfish by FTIR Spectra
  • 6.3.3 Raman Spectra from Normal and Regenerating Scales of Goldfish
  • References
  • Chapter 7: Relationship Between Bone Morphology and Bone Quality in Female Femurs: Implication for Additive Risk of Alternative Forced Molting
  • 7.1 Introduction
  • 7.2 Material and Method
  • 7.2.1 Breeding Test
  • 7.2.2 Sample Collection
  • 7.2.3 Bone Density
  • 7.2.4 Fourier Transform Infrared Analysis of the Femoral Cortex
  • 7.2.5 Eggshell Quality Test
  • 7.2.6 Statistics
  • 7.3 Results
  • 7.3.1 Bone Density
  • 7.3.2 Fourier Transform Infrared Analysis of Femoral Cortex
  • 7.3.3 Egg Quality Test
  • 7.4 Discussion
  • References
  • Chapter 8: Spectroscopic Investigation of Shell Pigments from the Family Neritidae (Mollusca: Gastropoda)
  • 8.1 Introduction
  • 8.2 Materials and Methods
  • 8.3 Results and Discussion
  • 8.3.1 Raman Spectra at 514.5 nm
  • 8.3.2 Raman Spectra at 442 nm Excitation
  • 8.4 Conclusions
  • References
  • Chapter 9: 3D Visualization of Calcified and Non-calcified Molluscan Tissues Using Computed Tomography
  • 9.1 Introduction
  • 9.2 Material and Methods
  • 9.3 Results
  • 9.3.1 Shells
  • 9.3.2 Soft Tissues
  • 9.4 Discussion
  • References
  • Part II: Molecular and Cellular Regulation of Biomineralization
  • Chapter 10: Calcium Ion and Mineral Pathways in Biomineralization: A Perspective
  • 10.1 Introduction
  • 10.2 Calcium Uptake and Transport
  • 10.3 Temporary Calcium Storage in Cells
  • 10.4 Many Open Questions and Challenges Remain
  • 10.5 Concluding Comment
  • References
  • Chapter 11: Identification of Barnacle Shell Proteins by Transcriptome and Proteomic Approaches
  • 11.1 Introduction
  • 11.2 Material and Methods
  • 11.2.1 M. rosa and Its Larval Culture Construction.
  • 11.2.2 Transcriptome Data Analysis
  • 11.2.3 Preparation of Shell-Soluble and Shell-Insoluble Fractions
  • 11.2.4 In-Gel Digestion, LC-MS/MS Analysis, and Protein Identification
  • 11.2.5 Analysis of M. rosa Shell Protein Candidates
  • 11.3 Results and Discussion
  • 11.3.1 Development of Shell Formation in M. rosa Juvenile
  • 11.3.2 Identification of Proteins in M. rosa Shell Extract
  • 11.3.3 Filtering Shell Proteome Data with Transcriptome Analysis
  • References
  • Chapter 12: The Optical Characteristics of Cultured Akoya Pearl Are Influenced by Both Donor and Recipient Oysters
  • 12.1 Introduction
  • 12.2 Materials and Methods
  • 12.2.1 Akoya Pearl Oysters
  • 12.2.2 Pearl Culture
  • 12.2.3 Fourier Transform Infrared Spectroscopy and Data Analysis
  • 12.3 Results
  • 12.3.1 The Cultured Pearls from Various Culture Sites
  • 12.3.2 The Cultured Pearls from Combination of Donor and Recipient Pearl Oysters
  • 12.4 Discussion
  • References
  • Chapter 13: Influence of B Vitamins on Proliferation and Differentiation of Osteoblastic Bovine Cell Cultures: An In Vitro Study
  • 13.1 Introduction
  • 13.2 Materials and Methods
  • 13.3 Results and Discussion
  • References
  • Chapter 14: Rice Plant Biomineralization: Electron Microscopic Study on Plant Opals and Exploration of Organic Matrices Involved in Biosilica Formation
  • 14.1 Introduction
  • 14.2 Materials and Methods
  • 14.2.1 Plant Materials and Microscopy
  • 14.2.2 Extraction of Organic Matrices from Plant Opals
  • 14.3 Results and Discussion
  • 14.3.1 Morphology and Function of Plant Opals
  • 14.3.2 Organic Matrices from Separated Plant Opals
  • References
  • Chapter 15: DMP1 Binds Specifically to Type I Collagen and Regulates Mineral Nucleation and Growth
  • 15.1 Introduction
  • 15.2 Methods
  • 15.2.1 Expression of Recombinant DMP1 Protein.
  • 15.2.2 Preparation of Demineralized Dentin Wafers for Immunogold Labeling
  • 15.2.3 Preparation of Demineralized and Deproteinized Dentin Wafers for Nucleation Experiments
  • 15.2.4 Modeling of DMP1
  • 15.3 Results
  • 15.3.1 DMP1 Binds to Densely Packed Collagen Fibrils of the Dentin Matrix
  • 15.3.2 Structural Characterization of the Mineral Deposited on the Collagen Matrix of Dentin
  • 15.3.3 Computation and Ab Initio Models of DMP1
  • 15.4 Discussion
  • References
  • Chapter 16: Exploration of Genes Associated with  Sponge Silicon Biomineralization in the  Whole Genome Sequence of the Hexactinellid Euplectella curvistellata
  • 16.1 Introduction
  • 16.2 Materials and Methods
  • 16.3 Results and Discussion
  • 16.3.1 Construction of Whole Genome DNA Library of E. curvistellata
  • 16.3.2 Search for Silicatein Gene
  • 16.3.3 Search of Genes Associated with Silicon Biomineralization
  • 16.4 Conclusion
  • References
  • Part III: Genome-Based Analysis of Biomineralization
  • Chapter 17: The Origin and Early Evolution of SCPP Genes and Tissue Mineralization in Vertebrates
  • 17.1 Introduction
  • 17.2 Materials and Methods
  • 17.3 Results and Discussion
  • 17.3.1 Phylogenetic Analysis
  • 17.3.2 Arrangements of SCPP Genes and SPARC Family Genes in Vertebrate Genomes
  • References
  • Part IV: Evolution in Biomineralization
  • Chapter 18: Immunolocalization of Enamel Matrix Protein-Like Proteins in the Tooth Enameloid of Actinopterygian Bony Fish
  • 18.1 Introduction
  • 18.2 Materials and Methods
  • 18.3 Results
  • 18.3.1 Initial Mineralization of Enameloid in Polypterus
  • 18.3.2 Immunohistochemical Localization of EMP-Like Proteins in Enameloid Matrix
  • 18.3.2.1 Gar
  • 18.3.2.2 Polypterus
  • 18.4 Discussion
  • References
  • Chapter 19: Geographical and Seasonal Variations of the Shell Microstructures in the Bivalve Scapharca broughtonii
  • 19.1 Introduction.
  • 19.2 Materials and Methods
  • 19.3 Results
  • 19.4 Discussion
  • References
  • Part V: Biomineralization in Medical and Dental Sciences
  • Chapter 20: Enhancement of Bone Tissue Repair by Octacalcium Phosphate Crystallizing into Hydroxyapatite In Situ
  • 20.1 Introduction
  • 20.2 Bone-Bonding Property of OCP Implanted in Bone Defects
  • 20.3 Hydrolysis from OCP to Ca-Deficient HA in Physiological Conditions
  • 20.4 Osteoblastic Cell Response
  • 20.5 Osteoclastic Cell Response
  • 20.6 Bone Substitute Materials
  • 20.7 Conclusion
  • References
  • Chapter 21: The Relationship Between the Structure and Calcification of Dentin and the Role of Melatonin
  • 21.1 Introduction
  • 21.2 Materials and Methods
  • 21.2.1 Ethics
  • 21.2.2 Materials
  • 21.2.3 Methods
  • 21.3 Results
  • 21.4 Discussion
  • References
  • Chapter 22: Fabrication of Hydroxyapatite Nanofibers with High Aspect Ratio via Low-Temperature Wet Precipitation Methods Under Acidic Conditions
  • 22.1 Introduction
  • 22.2 Materials and Methods
  • 22.3 Results and Discussion
  • References
  • Chapter 23: Physico-chemical Characterisation of the Processes Involved in Enamel Remineralisation by CPP-ACP
  • 23.1 Introduction
  • 23.2 Materials and Methods
  • 23.2.1 Materials
  • 23.2.2 Ion-Binding Studies
  • 23.2.3 Nuclear Magnetic Resonance Studies
  • 23.2.4 Remineralisation Studies
  • 23.3 Results
  • 23.3.1 The CPP-ACP Complexes Exist in Equilibria with Both Bound and Free Calcium and Phosphate Ions
  • 23.3.2 The CPP-ACP Complexes Are Small Readily Diffusible Species
  • 23.3.3 Both CPP-ACP and β-CN(1-25)-ACP Complexes Release Mineral Ions that Remineralise Demineralised Enamel Lesions
  • 23.4 Discussion
  • References
  • Chapter 24: Molecular Interactions of Peptide Encapsulated Calcium Phosphate Delivery Vehicle at Enamel Surfaces
  • 24.1 Introduction
  • 24.2 Materials and Methods.
  • 24.2.1 Adsorption Studies.