Ocean-Atmosphere Interactions of Gases and Particles.

This book examines how gases and particles formed in the oceans affect the chemistry and physics of the atmosphere when they move from ocean to atmosphere. It also details how material deposited from the atmosphere affects the biogeochemistry of the oceans.

Saved in:
Bibliographic Details
Superior document:Springer Earth System Sciences Series
:
TeilnehmendeR:
Place / Publishing House:Berlin, Heidelberg : : Springer Berlin / Heidelberg,, 2014.
©2014.
Year of Publication:2014
Edition:1st ed.
Language:English
Series:Springer Earth System Sciences Series
Online Access:
Physical Description:1 online resource (366 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 11353nam a22004933i 4500
001 5006422606
003 MiAaPQ
005 20240229073837.0
006 m o d |
007 cr cnu||||||||
008 240229s2014 xx o ||||0 eng d
020 |a 9783642256431  |q (electronic bk.) 
020 |z 9783642256424 
035 |a (MiAaPQ)5006422606 
035 |a (Au-PeEL)EBL6422606 
035 |a (OCoLC)1109201749 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a GB3-5030 
082 0 |a 551.5246 
100 1 |a Liss, Peter S. 
245 1 0 |a Ocean-Atmosphere Interactions of Gases and Particles. 
250 |a 1st ed. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin / Heidelberg,  |c 2014. 
264 4 |c ©2014. 
300 |a 1 online resource (366 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Springer Earth System Sciences Series 
505 0 |a Intro -- Preface -- Acknowledgments -- COST - European Cooperation in Science and Technology -- Contents -- Contributors -- Lead Authors -- Contributing Authors -- 1 Short-Lived Trace Gases in the Surface Ocean and the Atmosphere -- 1.1 Introduction -- 1.2 Sulphur and Related Gases -- 1.2.1 DMS(P) in the Surface Ocean -- 1.2.1.1 Ecosystem Dynamics -- 1.2.1.2 DMS Yield -- 1.2.1.3 Predicted Impact of Climate Change -- 1.2.2 Other Sulphur and Related Gases in the Surface Ocean -- 1.2.2.1 Carbonyl Sulphide -- 1.2.2.2 Carbon Disulphide -- 1.2.2.3 Hydrogen Sulphide -- 1.2.2.4 Methanethiol -- 1.2.2.5 Dimethyl Selenide -- 1.2.3 Atmospheric Sulphur and Related Gases -- 1.2.3.1 Chemistry of Sulphur in the Marine Boundary Layer (MBL) -- 1.2.3.2 CLAW Hypothesis -- 1.3 Halocarbon Gases -- 1.3.1 Chlorinated Compounds -- 1.3.1.1 Introduction -- 1.3.1.2 Methyl Chloride -- 1.3.1.3 Dichloromethane -- 1.3.1.4 Tri- and Tetrachloroethylene -- 1.3.1.5 Chloroform -- 1.3.2 Brominated Compounds -- 1.3.2.1 Methyl Bromide -- 1.3.2.2 CHBr3, CH2Br2 and Other Polybrominated Methanes -- 1.3.3 Iodinated Compounds -- 1.3.3.1 Iodomethane -- 1.3.3.2 Other Mono-Iodinated Iodocarbons -- 1.3.3.3 Di- and Tri-Halogenated Compounds -- 1.3.4 Halogens in the Marine Atmospheric Boundary Layer -- 1.4 Non-Methane Hydrocarbons (NMHCs) -- 1.4.1 Oxygenated Volatile Organic Compounds (OVOCs) -- 1.4.1.1 Atmospheric Importance of OVOCs -- 1.4.1.2 Atmospheric Budget -- 1.4.1.3 Surface Ocean Processes -- 1.4.2 Alkanes and Alkenes -- 1.4.3 Alkyl Nitrates -- 1.4.4 Hydrogen Cyanide (HCN) and Methyl Cyanide (CH3CN) -- 1.5 Ozone -- 1.6 Nitric Oxide -- 1.7 Ammonia and Amines -- 1.7.1 Ammonia -- 1.7.2 Amines -- 1.8 Hydrogen -- 1.9 Carbon Monoxide -- 1.10 Concluding Remarks -- References -- 2 Transfer Across the Air-Sea Interface -- 2.1 Introduction -- 2.2 Processes -- 2.2.1 Microscale Wave Breaking. 
505 8 |a 2.2.2 Small Scale Turbulence -- 2.2.3 Bubbles, Sea Spray -- 2.2.4 Wind-Generated Waves -- 2.2.5 Large-Scale Turbulence -- 2.2.6 Rain -- 2.2.7 Surface Films -- 2.2.8 Biological and Chemical Enhancement -- 2.2.9 Atmospheric Processes -- 2.3 Process Models -- 2.3.1 Interfacial Models -- 2.3.1.1 Thin (Stagnant) Film Model -- 2.3.1.2 Surface Renewal Model -- 2.3.1.3 Eddy Renewal Model -- 2.3.1.4 Surface Penetration -- 2.3.1.5 Air-Side Transfer -- 2.3.2 Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) -- 2.4 Exchanged Quantities -- 2.4.1 Physical Quantities -- 2.4.2 Gases -- 2.4.3 Particles -- 2.4.3.1 Dry Deposition -- 2.4.3.2 Wet Deposition -- 2.5 Measurement Techniques -- 2.5.1 Small-Scale Measurements Techniques -- 2.5.1.1 Particle-Based Techniques -- 2.5.1.2 Thermographic Techniques -- 2.5.2 Micrometeorological Techniques -- 2.5.3 Mass Balance -- 2.5.3.1 Techniques -- 2.5.3.2 Scales (Spatial and Temporal) -- 2.5.3.3 Accuracy and Limitations -- 2.5.3.4 Current and Recent Field Studies -- 2.5.4 Profiles of pCO2 Near the Surface -- 2.5.5 Method Evaluation -- 2.6 Parameterization of Gas Exchange -- 2.6.1 Wind Speed Relationships -- 2.6.2 Surface Roughness, Slope -- 2.6.3 NOAA-COARE -- 2.6.4 Energy Dissipation -- 2.6.5 Evaluating and Selecting Transfer Velocity Parameterisations -- 2.7 Sea Ice -- 2.8 Applications of Air-Sea Gas Transfer -- 2.8.1 Models -- 2.8.2 Remote Sensing -- 2.8.3 Inventories, Climatologies Using In Situ Data -- 2.9 Summary -- References -- 3 Air-Sea Interactions of Natural Long-Lived Greenhouse Gases (CO2, N2O, CH4) in a Changing Climate -- 3.1 Introduction -- 3.1.1 Atmospheric Greenhouse Gases from Ice Cores -- 3.2 Surface Ocean Distribution and Air-Sea Exchange of CO2 -- 3.2.1 Global Tropospheric CO2 Budget -- 3.2.2 Processes Controlling CO2 Dynamics in the Upper Water Column. 
505 8 |a 3.2.3 Surface Ocean fCO2 and Air-Sea CO2 Fluxes in the Open Ocean -- 3.2.3.1 Surface Ocean fCO2 Distribution -- 3.2.3.2 Multi-Year Changes and Trends -- 3.2.3.3 Comparison of Air-Sea CO2 Flux Estimates -- 3.2.3.4 Sea Ice -- 3.2.3.5 Coastal to Open Ocean Carbon Exchanges -- 3.2.4 Air-Sea CO2 Fluxes in Coastal Areas -- 3.2.4.1 Continental Shelves -- 3.2.4.2 Near-Shore Systems -- 3.2.4.3 Multi-Year Changes and Trends -- 3.3 Marine Distribution and Air-Sea Exchange of N2O -- 3.3.1 Global Tropospheric N2O Budget -- 3.3.2 Nitrous Oxide Formation Processes -- 3.3.2.1 Denitrification -- 3.3.2.2 Nitrification -- 3.3.2.3 N2O Formation by Dissimilatory Nitrate Reduction to Ammonium -- 3.3.3 Global Oceanic Distribution of Nitrous Oxide -- 3.3.4 Coastal Distribution of Nitrous Oxide -- 3.3.5 Marine Emissions of Nitrous Oxide -- 3.4 Marine Distribution and Air-Sea Exchange of CH4 -- 3.4.1 Global Tropospheric CH4 Budget -- 3.4.2 Formation and Removal Processes for Methane -- 3.4.3 Global Oceanic Distribution of Methane -- 3.4.4 Coastal Distribution of Methane -- 3.4.4.1 Coastal Sediments -- 3.4.4.2 Coastal Waters -- 3.4.4.3 Methane Hydrates -- 3.4.5 Marine Emissions of Methane -- 3.5 Impact of Global Change -- 3.5.1 Future Changes in the Physics of the Oceanic Surface Layer -- 3.5.1.1 Carbon Dioxide in the Open Ocean -- 3.5.1.2 Carbon Dioxide in Coastal Seas -- 3.5.1.3 Nitrous Oxide and Methane -- 3.5.2 Ocean Acidification -- 3.5.2.1 Carbon Dioxide -- 3.5.2.2 Nitrous Oxide and Methane -- 3.5.3 Deoxygenation and Suboxia in the Open Ocean -- 3.5.4 Coastal Euthrophication and Hypoxia -- 3.5.5 Changes in Methane Hydrates -- 3.6 Key Uncertainties in the Air-Sea Transfer of CO2, N2O and CH4 -- 3.6.1 Outgassing of Riverine Carbon Inputs -- 3.6.2 Heterogeneity in Coastal Systems -- 3.6.3 Sea Ice -- 3.6.4 Parameterising Air-Sea Gas Transfer. 
505 8 |a 3.6.5 Data Collection, Data Quality and Data Synthesis -- 3.7 Conclusions and Outlook -- 3.7.1 Carbon Dioxide -- 3.7.2 Nitrous Oxide and Methane -- References -- 4 Ocean-Atmosphere Interactions of Particles -- 4.1 Introduction -- 4.2 Aerosol Production and Transport in the Marine Atmosphere -- 4.2.1 Sources of Aerosol in the Marine Atmosphere -- 4.2.1.1 Sea Spray Aerosol Production -- 4.2.1.2 Organic Enrichment of Particulate Organic Matter in Sea Spray Aerosol -- Laboratory Studies -- Global Distribution of Organic Enrichment -- 4.2.1.3 Secondary Aerosol Formation in the Marine Atmospheric Boundary Layer -- Secondary Inorganic Aerosol Formation -- Secondary Organic Marine Aerosol -- New Particle Formation in the Marine Boundary Layer? -- 4.2.2 Non-Marine Sources -- 4.2.2.1 Desert Dust -- 4.2.2.2 Volcanic Gases, Aerosols and Ash -- 4.2.2.3 Global Emissions of Biogenic Volatile Organis Compounds (BVOCś) from Terrestrial Ecosystems -- 4.2.2.4 Anthropogenic Emissions -- Anthropogenic Land-Based Emissions -- Uncertainty in Global Anthropogenic Emissions -- Global Biomass Burning Emissions -- International Shipping Emissions -- Comparison and Evaluation of Different Emission Datasets -- 4.2.3 Ageing and Mixing of Aerosols During Transport -- 4.2.3.1 Chemical Ageing of Organic Aerosols -- 4.2.3.2 Internal Mixing -- Dust/Inorganic Species -- Dust/Organic Species -- Sea Salt -- Future Directions -- 4.2.4 Dust-Mediated Transport of Living Organisms and Pollutants -- 4.3 Direct Radiative Effects (DRE) -- 4.4 Effects on Cloud Formation and Indirect Radiative Effects -- 4.5 Deposition of Aerosol Particles to the Ocean Surface and Impacts -- 4.5.1 Deposition -- 4.5.1.1 Iron -- 4.5.1.2 Phosphorus -- 4.5.1.3 Nitrogen -- 4.5.1.4 Deposition of Other Species -- 4.5.2 Elements of Biogeochemical Interest and Their Chemical Forms. 
505 8 |a 4.5.3 Dissolution- Scavenging Processes -- 4.5.4 Atmospheric Impacts in HNLC and LNLC Areas -- 4.5.4.1 Experimental: Large Scale Fertilisation Experiments (Fe, P) -- 4.5.4.2 Experimental: Microcosms -- Main Results Obtained from the Microcosm Approach -- 4.5.4.3 Experimental: In Situ Mesocosms -- 4.5.4.4 Modelling -- 4.5.5 Particulate Matter and Carbon Export -- 4.6 Summary and Outlook -- References -- 5 Perspectives and Integration in SOLAS Science -- 5.1 Perspectives: In Situ Observations, Remote Sensing, Modelling and Synthesis -- 5.1.1 In Situ Observations -- 5.1.1.1 ARGO (T, S, O2) -- 5.1.1.2 Ocean Observatories -- 5.1.1.3 Atmospheric Observatories -- 5.1.1.4 Monitoring Reactive Trace Species in the Marine Atmosphere: Highlights from the Cape Verde Observatory -- 5.1.1.5 Conclusions -- 5.1.2 Earth Observation Products -- 5.1.2.1 Altimetry, SST, Winds, Sea State -- 5.1.2.2 Sea Surface Salinity -- 5.1.2.3 Marine Carbon Observations from Satellite Data: Ocean Color/PIC/POC -- 5.1.2.4 Sea Ice -- 5.1.2.5 Aerosols -- 5.1.2.6 Satellite Measurements of Trace Gases Over the Oceans -- 5.1.2.7 Conclusions -- 5.1.3 Modelling -- 5.1.3.1 Global Perspective, Prognostic IPCC and Hindcast -- 5.1.3.2 Regional Perspectives from High-Resolution Modeling -- 5.1.3.3 Inverse Modelling -- 5.1.3.4 Conclusions -- 5.1.4 SOLAS/COST Data Synthesis Efforts -- 5.1.4.1 MEMENTO (MarinE MethanE and NiTrous Oxide) Database -- 5.1.4.2 HalOcAt (Halocarbons in the Ocean and Atmosphere) -- 5.1.4.3 DMS-GO (DMS in the Global Ocean) -- 5.1.4.4 The Surface Ocean CO2 ATlas (SOCAT) -- 5.1.4.5 Aerosol and Rainwater Chemistry Database -- 5.1.4.6 A Data Compilation of Iron Addition Experiments -- 5.1.4.7 Conclusions -- 5.2 Examples of SOLAS Integrative Studies -- 5.2.1 DMS Ocean Climatology and DMS Marine Modelling -- 5.2.1.1 Global Climatologies Based on Observations. 
505 8 |a 5.2.1.2 Diagnostic Approaches: Based on Empirical Correlations. 
520 |a This book examines how gases and particles formed in the oceans affect the chemistry and physics of the atmosphere when they move from ocean to atmosphere. It also details how material deposited from the atmosphere affects the biogeochemistry of the oceans. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Johnson, Martin T. 
776 0 8 |i Print version:  |a Liss, Peter S.  |t Ocean-Atmosphere Interactions of Gases and Particles  |d Berlin, Heidelberg : Springer Berlin / Heidelberg,c2014  |z 9783642256424 
797 2 |a ProQuest (Firm) 
830 0 |a Springer Earth System Sciences Series 
856 4 0 |u https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6422606  |z Click to View