Interface Oral Health Science 2016 : : Innovative Research on Biosis-Abiosis Intelligent Interface.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2016.
©2017.
Year of Publication:2016
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (273 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Acknowledgment
  • Contents
  • Part I: Symposium I: Biomaterials in Interface Science
  • Chapter 1: Low-Modulus Ti Alloys Suitable for Rods in Spinal Fixation Devices
  • 1.1 Introduction
  • 1.2 Mechanism of Increasing Young's Modulus in Deformed Region
  • 1.3 Possible Alloy System
  • 1.4 Ti-Mo Alloys
  • 1.4.1 Microstructures Before and After Deformation
  • 1.4.2 Young's Modulus Change by Deformation
  • 1.4.3 Deformation-Induced Products and Phase Constitutions
  • 1.4.4 Springback
  • 1.5 Ti-Cr Alloys
  • 1.5.1 Microstructures Before and After Deformation
  • 1.5.2 Young's Modulus Change by Deformation
  • 1.5.3 Deformation-Induced Products and Phase Constitutions
  • 1.5.4 Springback
  • 1.6 Young's Modulus Under Solution Treatment Conditions and Increment Ratio of Young's Modulus by Cold Rolling
  • 1.7 Toward Practical Applications
  • 1.8 Summary
  • References
  • Chapter 2: Ceramic Coating of Ti and Its Alloys Using Dry Processes for Biomedical Applications
  • 2.1 Introduction
  • 2.2 Antibacterial Properties of Ag-Containing Amorphous Calcium Phosphate Coating Films
  • 2.3 Photocatalytic Activity of TiO2 Layers Formed by Two-­Step Thermal Oxidation
  • 2.3.1 UV (Ultraviolet) Response
  • 2.3.2 Visible-Light Response
  • 2.4 Summary
  • References
  • Chapter 3: Dealloying Toxic Ni from SUS316L Surface
  • 3.1 Introduction
  • 3.1.1 Dealloying in a Metallic Melt
  • 3.1.2 Reaction Design for Dealloying Ni from SUS316L
  • 3.2 Experimental Procedure
  • 3.3 Results and Discussion
  • 3.3.1 Dealloying Ni Treatments
  • 3.3.2 Polarization Tests
  • 3.3.3 Ion Release Tests
  • 3.4 Conclusions
  • References
  • Chapter 4: Bio-ceramic Coating of Ca-Ti-O System Compound by Laser Chemical Vapor Deposition
  • 4.1 Introduction
  • 4.2 Laser Chemical Vapor Deposition
  • 4.3 Bio-ceramic Coating of Ca-Ti-O by Laser CVD [25, 26]
  • 4.4 Summary
  • References.
  • Part II: Symposium II: Innovation for Oral Science and Application
  • Chapter 5: Development of a Robot-Assisted Surgery System for Cranio-Maxillofacial Surgery
  • 5.1 General Information of Surgical Robots
  • 5.2 Computer-Aided Design (CAD) System for CMF Surgery
  • 5.3 Surgical Robot for CMF Surgery
  • 5.3.1 Conformation of the Robotic System
  • 5.3.2 Safety Control of the Robotic System
  • 5.3.3 Navigation and Trail Program
  • 5.3.4 Test of the Robot
  • 5.4 Medical Experiment for the Robotic System
  • 5.4.1 Evaluation of the CAD Software
  • 5.4.2 Accuracy of the Three-Dimensional Reconstruction of the CAD Software
  • 5.4.3 Accuracy of the Navigation System
  • 5.4.4 Animal Experiment of Robot-Assisted Operations
  • References
  • Chapter 6: Facilitating the Movement of Qualified Dental Graduates to Provide Dental Services Across ASEAN Member States
  • 6.1 Formation of ASEAN to AJCCD
  • 6.2 MRA for Free Flow of Services and Professionals
  • 6.3 Impact on Dental Education
  • 6.4 Facilitating Free Movement of Dental Professionals Across ASEAN
  • 6.4.1 Current Work
  • 6.4.2 Future Work
  • 6.5 Conclusion
  • References
  • Chapter 7: Putting the Mouth into Health: The Importance of Oral Health for General Health
  • 7.1 Introduvction
  • 7.2 The Oral-Systemic Nexus
  • 7.3 Oral-Systemic Health Associations
  • 7.4 The Oral Environment: A Model for Other Body Systems
  • 7.5 Summary
  • References
  • Chapter 8: Orofacial Stem Cells for Cell-Based Therapies of Local and Systemic Diseases
  • 8.1 Overview
  • 8.1.1 Need for Stem/Progenitor Cell-Based Therapy
  • 8.1.2 Cell Sources During Orofacial Development
  • 8.2 Mesenchymal Stem Cell-Derived Oral Tissues
  • 8.2.1 Markers and Sources of Orofacial MSCs
  • 8.2.2 Mesenchymal Stem Cells of Dental Pulp Stem Cells (DPSCs)
  • 8.2.3 MSCs of the Periodontal Ligament, Apical Papilla and Follicles
  • 8.3 Muscle Stem Cells.
  • 8.3.1 Potential of Orofacial Muscle Stem Cells in Cardiac Repair
  • 8.3.2 Developmental Similarities of Cardiac and Orofacial Myogenic Progenitors
  • 8.3.3 An Interesting Example of Using Tongue Stem Cell for Cardiac Repair
  • 8.4 Closing Remark
  • References
  • Chapter 9: Biomaterials in Caries Prevention and Treatment
  • 9.1 Synthesis of Novel Mineralization Materials in Preventive Dentistry
  • 9.2 Quaternary Ammonium Methacrylates (QAMs)
  • 9.2.1 Killing Bacteria and Inhibiting Biofilms
  • 9.2.2 Mechanical Properties
  • 9.2.3 Durability
  • 9.2.4 Biological Safety
  • 9.2.5 Inhibiting MMPs
  • 9.2.6 Mechanism
  • 9.2.7 Resistant/Persister Bacteria
  • 9.2.8 Models
  • References
  • Part III: Symposium III: Regenerative Oral Science
  • Chapter 10: Efficacy of Calcium Phosphate-Based Scaffold Materials on Mineralized and  Non-­mineralized Tissue Regeneration
  • 10.1 Introduction
  • 10.2 Mineralized and Non-mineralized Tissue Responses
  • 10.3 Matrix Materials for Calcium Phosphate
  • 10.4 Cell Responses to Calcium Phosphate Materials
  • 10.5 Conclusion
  • References
  • Chapter 11: Gene Delivery and Expression Systems in Induced Pluripotent Stem Cells
  • 11.1 Introduction
  • 11.2 Viral-Based Gene Delivery Systems
  • 11.2.1 Adenovirus Vectors
  • 11.2.2 AAV Vectors
  • 11.2.3 Retrovirus Vectors
  • 11.2.4 Lentivirus Vectors
  • 11.3 Transposon-Based Gene Delivery Systems
  • 11.4 tet-Controlled Transcriptional Regulation System
  • 11.5 Conclusions
  • References
  • Chapter 12: Emerging Regenerative Approaches for Periodontal Regeneration: The Future Perspective of Cytokine Therapy and Stem Cell Therapy
  • 12.1 Introduction
  • 12.2 Periodontal Ligament as a Storage Site for Periodontal Tissue Stem Cells
  • 12.3 Concept and Current Status of Periodontal Tissue Regenerative Therapy
  • 12.4 Possibility of Cytokine Therapy.
  • 12.5 Inducing Periodontal Tissue Regeneration with Basic Fibroblast Growth Factor (FGF-2)
  • 12.6 Future Outlook of Cytokine Therapy Using FGF-2
  • 12.7 Possibility of Periodontal Tissue Regenerative Therapy with Stem Cell Transplantation
  • 12.8 Conclusion
  • References
  • Chapter 13: Molecular Mechanisms Regulating Tooth Number
  • 13.1 Introduction
  • 13.2 Skin Appendage
  • 13.3 Missing Teeth
  • 13.3.1 Missing Teeth in Humans
  • 13.3.1.1 Non-syndromic (Isolated) Familial Missing Teeth
  • 13.3.1.2 Syndromic Missing Teeth
  • 13.3.1.3 Sporadic Missing Teeth
  • 13.3.2 Missing Teeth in Mice
  • 13.4 Supernumerary Teeth
  • 13.4.1 Supernumerary Teeth in Humans
  • 13.4.1.1 Syndromic Extra Teeth in Humans
  • 13.4.1.2 Missing and Extra Teeth in Humans
  • 13.4.2 Supernumerary Teeth in Mice
  • 13.5 Odontogenic Activity Between Tooth Germs
  • 13.6 Tooth Initiation and Tooth Type
  • 13.7 The Midline and Tooth Development
  • 13.8 Conclusion
  • References
  • Part IV: Symposium IV: Medical Device Innovation for Diagnosis and Treatment of Biosis- Abiosis Interface
  • Chapter 14: Open-Source Technologies and Workflows in Digital Dentistry
  • 14.1 Cloud Base Solution for Intelligent Dental Clinic and Manufacturing System
  • 14.2 Integration of Digital Information
  • 14.3 A Shade Guide Development Based on Open-Source Technology
  • 14.4 3D Printing Applications in Digital Dentistry
  • 14.5 Conclusions
  • References
  • Chapter 15: Detection of Early Caries by Laser-Induced Breakdown Spectroscopy
  • 15.1 Introduction
  • 15.2 Experimental Setup
  • 15.3 Results and Discussion
  • 15.4 Conclusion
  • References
  • Chapter 16: Acoustic Diagnosis Device for Dentistry
  • 16.1 Introduction
  • 16.2 Materials and Methods
  • 16.2.1 Observation of Rat Periodontal Ligament Using Scanning Acoustic Microscopy
  • 16.2.1.1 Scanning Acoustic Microscope (SAM)
  • 16.2.1.2 Tissue Preparation.
  • 16.2.1.3 Image Analysis
  • 16.2.1.4 Statistics
  • 16.2.2 Observation of Human Carious Dentin Using Acoustic Impedance Microscopy
  • 16.2.2.1 Acoustic Impedance Microscope (AIM)
  • 16.2.2.2 Tissue Preparation
  • 16.2.2.3 Scanning Electron Microscopy (SEM)
  • 16.2.2.4 Statistics
  • 16.2.3 Portable Acoustic Stiffness Checker (PASC)
  • 16.3 Results
  • 16.3.1 SAM Observation of PDL
  • 16.3.2 Sound Speed Analysis
  • 16.3.2.1 AIM Observation of Dentin Caries
  • 16.3.2.2 SEM Observation of Dentin Caries
  • 16.3.3 Ultrasound Stiffness Checker
  • 16.4 Discussion
  • 16.4.1 SAM Observation of PDL
  • 16.4.2 AIM Observation of Dentin Caries
  • References
  • Part V: Poster Presentation Award Winners
  • Chapter 17: Activation of TLR3 Enhance Stemness and Immunomodulatory Properties of Periodontal Ligament Stem Cells (PDLSCs)
  • 17.1 Introduction
  • 17.2 Materials and Methods
  • 17.2.1 PDLSC Culture
  • 17.2.2 Poly(I:C) Treatment
  • 17.2.3 Mineralization Assay
  • 17.2.4 Gene Expression Analysis
  • 17.2.5 Flow Cytometry
  • 17.2.6 Statistical Analyses
  • 17.3 Results and Discussion
  • 17.4 TLR3 Activation Promote Stemness of PDLSCs
  • 17.5 TLR3 Activation Enhance Immunosuppressive Properties of PDLSCs
  • 17.6 TLR3 Activation Induces IFNγ Production in PDLSCs Via NF-kB Pathway
  • 17.7 Conclusion
  • References
  • Chapter 18: Influence of Exogenous IL-12 on Human Periodontal Ligament Cells
  • 18.1 Introduction
  • 18.2 Materials and Methods
  • 18.2.1 Cell Culture
  • 18.2.2 Application of IL-12, IFNγ, IL-1β, and TNFα
  • 18.2.3 Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
  • 18.2.4 Real-Time Polymerase Chain Reaction (Real-Time PCR)
  • 18.2.5 Statistical Analyses
  • 18.3 Results and Discussions
  • 18.3.1 Expressions of IL-12 and IL-12 Receptor in Periodontal Tissue Increased During Periodontal Inflammation.
  • 18.3.2 IL-12-Mediated IFNγ Expression in hPDL Cells via STAT4 and NF-kB Signaling Pathways.