Mesoscale Analysis of Hydraulics.

Saved in:
Bibliographic Details
:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2020.
©2021.
Year of Publication:2020
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (253 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 09334nam a22004093i 4500
001 5006420716
003 MiAaPQ
005 20240229073836.0
006 m o d |
007 cr cnu||||||||
008 240229s2020 xx o ||||0 eng d
020 |a 9789811597855  |q (electronic bk.) 
020 |z 9789811597848 
035 |a (MiAaPQ)5006420716 
035 |a (Au-PeEL)EBL6420716 
035 |a (OCoLC)1231603708 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a TC1-1800 
100 1 |a Xu, Weilin. 
245 1 0 |a Mesoscale Analysis of Hydraulics. 
250 |a 1st ed. 
264 1 |a Singapore :  |b Springer Singapore Pte. Limited,  |c 2020. 
264 4 |c ©2021. 
300 |a 1 online resource (253 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Foreword I -- Foreword II -- Acknowledgments -- Contents -- About the Author -- List of Main Symbols -- List of Main Acronyms -- 1 Introduction -- 1.1 Definition of Mesoscale -- 1.2 Necessity of Mesoscale Research -- 1.3 Main Contents of Mesoscale Research -- References -- 2 Mesoscale Analysis of Cavitation and Cavitation Erosion -- 2.1 Background -- 2.2 Interactions Between Cavitation Bubbles and Rigid Boundaries -- 2.2.1 Shock Waves and Microjets Generated from the Collapse of CBs -- 2.2.2 Effects of the Geometric Shape of a Boundary on the Collapse Behavior of a CB -- 2.3 Interactions Between Cavitation Bubbles and Elastic Boundaries -- 2.3.1 Morphology of CBs Near Elastic Boundaries During the Collapsing Process -- 2.3.2 Shock Waves Generated by CBs Near Elastic Boundaries When Collapsing -- 2.3.3 Cavitation Erosion Resistance of Elastic Materials -- 2.4 Interactions Between Cavitation Bubbles -- 2.4.1 Interactions Between Two CBs -- 2.4.2 Interactions Between Multiple CBs -- 2.5 Interactions Between Cavitation Bubbles and Particles -- 2.5.1 Effects of Particles on the Collapse Directions of CBs -- 2.5.2 Effects of a Particle on the Shock Wave Generated by a CB When Collapsing -- 2.5.3 Effects of Particles on Cavitation Erosion -- 2.6 Collapse Locations of Cavitation Bubbles and Cavitation Erosion Control in Engineering Practice -- 2.6.1 Collapse Location Distribution Pattern of CBs in a Flow Past a Convex Body -- 2.6.2 Relationship of the Collapse Locations of CBs in a Flow Past a Convex Body with the Flow Field -- 2.6.3 Critical Conditions Required for Near-Boundary Collapse of CBs in a Flow Past a Convex Body -- 2.7 Conclusions -- References -- 3 Mesoscale Analysis of Aeration for Cavitation Erosion Protection -- 3.1 Background -- 3.2 Attenuation Effect of Air Bubbles on the Collapse Intensity of Cavitation Bubbles. 
505 8 |a 3.2.1 Intensity of the Collapse Noise of a Cavitation Bubble Interacting But Not Connected with Air Bubbles -- 3.2.2 Intensity of the Collapse Noise of a Cavitation Bubble Interacting and Connected with an Air Bubble -- 3.3 Direction-Changing Effect of an Air Bubble on the Collapse of a Cavitation Bubble -- 3.3.1 Direction-Changing Effect of an Air Bubble on the Collapse of a Cavitation Bubble -- 3.3.2 Direction-Changing Effect of an Air Bubble on a Cavitation Bubble Evolving Near a Wall -- 3.3.3 Combined Direction-Changing Effects of a Wall and an Air Bubble on the Collapse of a Cavitation Bubble -- 3.4 Retarding Effect of an Air Bubble on the Collapse Shock Wave of a Cavitation Bubble -- 3.4.1 Retarding Effect of an Air Bubble on the Collapse Shock Wave of a Cavitation Bubble -- 3.4.2 Impact Intensity of the Collapse Shock Wave of a Cavitation Bubble Interacting with an Air Bubble Near a Wall -- 3.5 Forced Aeration for Cavitation Erosion Protection of High-Head Dams -- 3.5.1 Mesoscale Mechanism of Forced Aeration -- 3.5.2 Design Principles of Forced-Aeration for Cavitation Erosion Protection Structures of High-Head Dams -- 3.6 Conclusions -- References -- 4 Mesoscale Analysis of Air-Water Two-Phase Flow -- 4.1 Background -- 4.2 Mesoscale Mechanism for Surface Aeration of High-Velocity Flows -- 4.2.1 Mesoscale Characteristics of the Free-Surface Shape of Flows -- 4.2.2 Mesoscale Free-Surface Aeration Process of Flows -- 4.2.3 Quantitative Analysis of the Free-Surface Aeration of Flows -- 4.3 Critical Condition for Surface Aeration of High-Velocity Flows -- 4.3.1 Critical Condition for Air Entrainment of Free-Surface Depressions in Flows -- 4.3.2 Air-Bubble Entrainment Characteristics of Free-Surface Depressions in Flows -- 4.3.3 Comparison of Calculated and Experimental Results. 
505 8 |a 4.4 Calculation of Concentration Distribution for Surface Aeration of High-Velocity Flows -- 4.4.1 Regional Characteristics of Surface Aeration in High-Velocity Flows -- 4.4.2 Comparison of the Calculated and Measured Values of the Ca Distribution in High-Velocity Aerated Flows -- 4.4.3 Diffusion Pattern of Ca Along the Course -- 4.5 Analysis of Depth and Concentration of Aerated Flows in Engineering Practice -- 4.5.1 Analysis of Self-Aerated Open-Channel Flows in Terms of Hm -- 4.5.2 Analysis of the Aerated Flow in the Spillway of the Jinping-I Hydropower Station -- 4.6 Conclusions -- References -- 5 Mesoscale Analysis of Flood Discharge and Energy Dissipation -- 5.1 Background -- 5.2 Vortex Structure of a Single Jet -- 5.2.1 Velocity Field Characteristics of a Single Jet -- 5.2.2 Vorticity Field Characteristics of a Single Jet -- 5.3 Vortex Structure with Multijets -- 5.3.1 Transverse Vortices -- 5.3.2 Vertical Vortices -- 5.4 Vortex Structure of a Pressure Flow with a Sudden Contraction -- 5.4.1 Flow Field Characteristics of a Pressure Flow with a Sudden Contraction -- 5.4.2 Vortex Blob Characteristics of a Pressure Flow with a Sudden Contraction -- 5.5 Application of Multihorizontal Submerged Jets in Engineering Project -- 5.5.1 Overview of the Project -- 5.5.2 Characteristics of the Flood Discharge and Energy Dissipation -- 5.6 Conclusions -- References -- 6 Mesoscale Analysis of Flood Discharge Atomization -- 6.1 Background -- 6.2 Jet Spallation in Air -- 6.2.1 Velocity Distribution of Jet-Spalled Water Droplets -- 6.2.2 Distribution of the Moving Directions of the Water Droplets Formed by Jet Spallation -- 6.3 Jet Collision in Air -- 6.3.1 Characteristics of the Water Droplets Formed by a Jet Collision in Air -- 6.3.2 Effects of the Flow-Rate Ratio on the Characteristics of the Water Droplets Formed by a Jet Collision. 
505 8 |a 6.3.3 Spallation Area of Jets After Collision in Air -- 6.4 Water Splash by Plunging Jets -- 6.4.1 Characteristics of the Water Droplets Splashed by a Jet -- 6.4.2 Motion Pattern of the Water Droplets Formed by the Splashing of Water with a High-Velocity Plunging Jet -- 6.5 Discussion of the Scale Effect in Flood Discharge Atomization Model Tests for High-Head Dams -- 6.5.1 Similarity Criterion for FDA Model Tests -- 6.5.2 Scale Effect in FDA Model Tests -- 6.6 Conclusions -- References -- 7 Mesoscale Analysis of Flash Flood and Sediment Disasters -- 7.1 Background -- 7.2 Sudden Stop and Accumulation of Sediment Particles After a Hydraulic Jump -- 7.3 Threshold Conditions for Combined Flash Flood and Sediment Disasters -- 7.4 Identification of Disaster-Prone Regions Based on the Threshold Conditions for Combined Flash Flood and Sediment Disasters -- 7.5 Analysis of Control Techniques Based on the Threshold Conditions for Combined Flash Flood and Sediment Disasters -- 7.6 Conclusions -- References. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Xu, Weilin  |t Mesoscale Analysis of Hydraulics  |d Singapore : Springer Singapore Pte. Limited,c2020  |z 9789811597848 
797 2 |a ProQuest (Firm) 
856 4 0 |u https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6420716  |z Click to View