60 Years Of Cern Experiments And Discoveries.

Saved in:
Bibliographic Details
Superior document:Advanced Series On Directions In High Energy Physics ; v.23
:
TeilnehmendeR:
Place / Publishing House:Singapore : : World Scientific Publishing Company,, 2015.
©2015.
Year of Publication:2015
Edition:1st ed.
Language:English
Series:Advanced Series On Directions In High Energy Physics
Online Access:
Physical Description:1 online resource (450 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Contents
  • Foreword
  • Preface
  • 1. The Discovery of the Higgs Boson at the LHC
  • 1. Introduction
  • 2. The ATLAS and CMS Experiments
  • 2.1. The ATLAS detector
  • 2.2. The CMS detector
  • 2.3. Installation and commissioning
  • 3. Trigger, Computing, and Early Operation
  • 3.1. Trigger and computing
  • 3.2. Standard model measurements to demonstrate the performance
  • 4. The Standard Model Higgs Boson and the LHC
  • 4.1. Discovery and properties of the Higgs boson
  • 4.2. Results from the 2011 and partial 2012 datasets
  • 4.2.1. The H γγ decay mode
  • 4.2.2. The H ZZ 4l decay mode
  • 4.2.3. Combining the results
  • 4.3. Results from the full 2011 and 2012 data set
  • 4.3.1. Decays to bosons: The H γγ, the H ZZ 4l and H WW 2l2ν decay modes
  • 4.3.2. Decays to fermions: The H ττ and the H bb decay modes
  • 4.4. The ATLAS and CMS combinations of results from Run 1
  • 4.4.1. The mass of the Higgs boson
  • 4.4.2. Significance of the observed excess
  • 4.4.3. Compatibility of the observed state with the SM Higgs boson hypothesis: Signal strength
  • 4.4.4. Couplings of the Higgs boson
  • 4.4.5. Spinandparity
  • 5. Conclusions and Outlook
  • Acknowledgments
  • References
  • 2. Precision Physics with Heavy-Flavoured Hadrons
  • 1. Introduction
  • 2. An Historical Perspective
  • 2.1. The origin of the Kobayashi-Maskawa mechanism
  • 2.2. The rise of B physics
  • 2.3. The LHC era
  • 3. The CKM Matrix
  • 3.1. Definition
  • 3.2. Standard parametrisation
  • 3.3. Wolfenstein parametrisation
  • 3.4. The unitarity triangle
  • 3.5. Phenomenology of CP violation
  • 3.6. Experimental determination of the unitarity triangle
  • 4. Overview of Beauty Physics at the LHC
  • 4.1. CP violation
  • 4.2. Rare electroweak decays
  • 4.3. Observation of the B0s μ+μτ̔̈2212; decay
  • 5. Conclusions
  • References.
  • 3. Toward the Limits of Matter: Ultra-relativistic Nuclear Collisions at CERN
  • 1. Strongly Interacting Matter
  • 2. QCD Matter Research: Gaining Confidence
  • 3. Hot QCD Matter Research at CERN
  • 3.1. The acceleration of heavy nuclei at CERN
  • 3.2. The CERN SPS experiments and their physics
  • 4. Results at the Millenium
  • 4.1. Fireball energy density
  • 4.2. Fireball temperature
  • 4.3. Hadrons form at T = 160 ± 10 MeV: Close to lattice QCD prediction
  • 4.4. Strange baryon and antibaryon production is enhanced
  • 4.5. Charmonium (J/Ψ) suppression reveals QCD plasma formation
  • 4.6. QCD chiral symmetry restoration: Hadrons melt near Tc
  • 4.7. The fireball matter exhibits collective hydrodynamic flow
  • 4.8. Summary of SPS results and interlude at RHIC
  • 5. Heavy Ion Physics at the LHC
  • 5.1. Hadron formation
  • 5.2. Elliptic flow
  • 5.3. Jet quenching
  • 5.4. Quarkonium suppression
  • 5.5. Discoveries
  • 6. Conclusions
  • References
  • 4. The Measurement of the Number of Light Neutrino Species at LEP
  • 1. Introduction
  • 2. Theoretical Principles
  • 2.1. The width of the Z boson
  • 2.2. Experimental observables
  • 2.3. Sensitivity to Nν
  • 3. Experimental Measurement
  • 3.1. Detection of Z-boson decays
  • 3.2. Data sample
  • 3.3. Measurement of cross-sections and asymmetries
  • 3.4. Measurement of luminosity
  • 3.5. Results
  • 4. Direct Measurement of Nν
  • 5. Conclusions
  • References
  • 5. Precision Experiments at LEP
  • 1. Introduction
  • 2. The Electron-Positron Colliders
  • 3. The Four LEP Detectors
  • 4. Quantum Corrections to the W and Z Boson Masses
  • 5. SM Cross-Sections, Asymmetries and Branching Ratios
  • 6. LEP I Electroweak Results
  • 7. Constraints on the SM
  • 7.1. Constraints on the SM after the Higgs discovery
  • 8. LEP II Electroweak Results
  • 9. QCD Results
  • 9.1. The gluon self-interaction.
  • 9.2. Running of the b quark mass
  • 9.3. Determination of the strong coupling constant
  • 10. Gauge Coupling Unification
  • 11. Summary
  • Acknowledgments
  • References
  • 6. The Discovery of the W and Z Particles
  • 1. Introduction
  • 2. The CERN Proton-Antiproton Collider
  • 3. The Experiments
  • 3.1. The UA1 experiment
  • 3.2. The UA2 detector
  • 4. The Discovery of the W and Z Bosons
  • 4.1. Discovery of the W boson
  • 4.2. Discovery of the Z boson
  • 5. Physics Results from Subsequent Collider Runs
  • 5.1. W and Z masses and production cross-sections
  • 5.2. Charge asymmetry in the decay W e ν
  • 5.3. A test of QCD: The W boson transverse momentum
  • 5.4. Hadronic decays of the W and Z bosons
  • 5.5. Precision measurement of the W to Z mass ratio
  • 6. Conclusions
  • References
  • 7. The Discovery of Weak Neutral Currents
  • 1. Preface
  • 2. The Beginning of High Energy Neutrino Physics at CERN
  • 2.1. Status of weak interactions at the end of the 1950s
  • 2.2. The first neutrino experiment at CERN
  • 2.3. Early searches for weak neutral currents
  • 3. The Discovery of Weak Neutral Currents
  • 3.1. The bubble chamber Gargamelle
  • 3.2. The challenge
  • 3.3. Status in March 1973
  • 3.4. The neutron background
  • 3.5. The hot autumn
  • 3.6. The proton experiment
  • 3.7. Confirmations
  • 3.8. Conclusion
  • Acknowledgments
  • References
  • 8. Highlights from High Energy Neutrino Experiments at CERN
  • 1. Introduction
  • 2. Early Gargamelle Results on the Quark Parton Model
  • 3. Neutrino Beams and Experiments
  • 4. Nuclear Structure and Quark Parton Model
  • 5. Electroweak Measurements
  • 5.1. Weak mixing angle
  • 5.2. Charm production and GIM mechanism
  • 6. QCD and Structure Functions
  • 7. Epilogue
  • References
  • 9. The Discovery of Direct CP Violation
  • 1. Introduction
  • 1.1. The early days of CP violation
  • 1.2. Basic phenomenology.
  • 1.3. Experimental situation on / in the 80s-90s
  • 1.4. The main challenges in the measurement of /
  • 2. First Generation: The NA31 Beams and Detectors
  • 2.1. The K0L and K0S beams
  • 2.2. The NA31 experimental layout
  • 2.3. Measuring the neutral decays: Liquid argon calorimeter
  • 2.4. Measuring the charged mode
  • 2.5. Trigger, online background rejection and data acquisition
  • 3. The NA31 Analysis and Result
  • 3.1. Analysis
  • 3.2. The NA31 results
  • 3.3. Phase measurement
  • 4. The Second Generation: The NA48 Beams and Detectors
  • 4.1. The NA48 beams
  • 4.2. The tagger
  • 4.3. The liquid Krypton calorimeter
  • 4.4. The spectrometer
  • 4.5. The NA48 trigger and data acquisition systems
  • 4.6. The NA48 analysis
  • 4.6.1. The neutral decays
  • 4.6.2. The charged decays
  • 4.6.3. Corrections: Tagging inefficiency and dilution
  • 4.6.4. Corrections: Beam activity, scattering and acceptance
  • 4.7. NA48 results
  • 5. Concluding Remarks
  • 5.1. The world average of /
  • 5.2. CP violation in kaons: A portal to heavy meson systems
  • 5.3. CP violation in kaons: A portal for theory
  • 5.4. The legacy of CERN kaon experiments
  • Acknowledgments
  • References
  • 10. Measurements of Discrete Symmetries in the Neutral Kaon System with the CPLEAR (PS195) Experiment
  • 1. The Low Energy Antiproton Ring
  • 2. The CPLEAR Experimental Method
  • 3. The CPLEAR Detector
  • 4. Phenomenology of the Neutral Kaon System
  • 4.1. Time evolution
  • 4.2. Discrete symmetries
  • 4.3. Measurementof CP violation in the decay to π+πτ̔̈2212;
  • 4.4. Direct measurements of the T and CPT violation parameters
  • 4.5. T and CPT parameters constrained by the unitarity relation
  • 4.6. Measurements related to basic principles
  • 4.6.1. Probing a possible loss of QM coherence
  • 4.6.2. Testing the non-separability of the K0K0 wave function.
  • 4.6.3. Test of the equivalence principle for particles and antiparticles
  • 5. Conclusion
  • References
  • 11. An ISR Discovery: The Rise of the Proton-Proton Cross-Section
  • 1. Hadron-Hadron Cross-Sections at the Beginning of the 1970s
  • 2. The Theoretical Framework
  • 3. Three ISR Proposals
  • 4. First Results on Elastic Scattering and Total Cross-Sections
  • 5. Second-Generation Experiments
  • 6. Overlap Integrals in the ISR Energy Range
  • 7. The ISR "Small-Angle Physics" Seen from Higher Energies
  • 8. Concluding Remarks
  • References
  • 12. Deep Inelastic Scattering with the SPS Muon Beam
  • 1. Introduction
  • 2. Beam and Detectors
  • 2.1. Early detectors
  • 2.2. TheCOMPASSdetector
  • 2.3. The COMPASS polarised target
  • 3. Unpolarised Nucleon Structure Functions
  • 3.1. Cross-section and structure functions
  • 3.2. Scaling violations
  • 3.3. Tests of perturbative QCD
  • 3.4. Measurement of the strong coupling constant
  • 4. Nucleon Spin and Polarised Deep Inelastic Scattering
  • 4.1. Longitudinal spin
  • 4.2. Experimental method of the CERN experiments
  • 4.3. Experimental results
  • 4.3.1. Sumrules
  • 4.3.2. Structure functions and quark helicity distributions
  • 4.3.3. Gluon helicity distributions
  • 4.3.4. Global QCD analyses
  • 4.4. Transverse spin
  • 4.4.1. Transversity
  • 4.4.2. Transverse-momentum-dependent parton distributions
  • 4.4.3. Generalised parton distributions
  • 5. Conclusions
  • References
  • 13. Revealing Partons in Hadrons: From the ISR to the SPS Collider
  • 1. Preamble
  • 2. The ISR as a Gluon Collider
  • 2.1. Introduction
  • 2.2. The main milestones
  • 2.3. What about the ISR?
  • 2.4. Large transverse momentum: Inclusive production data
  • 2.5. Event structure and jets
  • 2.6. Direct photons
  • 2.7. The ISR legacy
  • 3. Jets at the SPS Collider
  • 3.1. Introduction
  • 3.2. Evidence for jet production.
  • 3.3. Theoretical interpretation.