Biocomputing 2013 - Proceedings Of The Pacific Symposium.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : World Scientific Publishing Company,, 2012.
©2013.
Year of Publication:2012
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (471 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006383185
ctrlnum (MiAaPQ)5006383185
(Au-PeEL)EBL6383185
(OCoLC)1165177092
collection bib_alma
record_format marc
spelling Altman, Russ B.
Biocomputing 2013 - Proceedings Of The Pacific Symposium.
1st ed.
Singapore : World Scientific Publishing Company, 2012.
©2013.
1 online resource (471 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Modeling cell heterogeneity: from single-cell variations to mixed cells populations 445 -- Computational Challenges of Mass Phenotyping 454 -- The Future of Genome-Based Medicine 456 -- 0session-intro-cdr.pdf -- 1cheng -- 1.   Introduction -- 2.   Methods -- 2.1.   Data sources and data processing -- 2.2.   Pair-wise similarity scores -- 2.3.   Method nomenclature -- 2.4.   AUCs and p-values -- 2.5.   Expression signal strength -- 3.   Results -- 4.   Discussion -- 5.   Acknowledgments -- 2felciano -- 3phatak -- 4shi -- 5wang -- 0intro-epigenomics.pdf -- 1ahn -- 2luo -- 3sahu -- 1gabr -- 2gevaert -- 3kim -- 1.   Introduction -- 2.   Methods -- 2.1.   Introduction of the Module Cover Problem -- 2.2.   Integrated Module Cover -- 2.3.   Two-Step Module Cover -- 3.   Results -- 3.1.   Analysis of Glioblastoma Multiforme Data from GMDI -- 3.1.1.   Comparison of the Module Cover approaches. -- We applied the integrated greedy module cover algorithm with k = 300 and = 1, allowing 5 samples (3%) to be covered less than k times to exclude outliers. We discuss the more detailed parameter selection in online Appendix Section 2. In particular, we found that the number of non-trivial modules (i.e. ≥ 3 genes) starts to level with k = 300, prompting us to choose this parameter value for our main analysis. We obtained 249 modules that contained a total of 513 genes including 41 non-singleton.
We also computed the entropy of association profiles for each module. Since entropy measures the uncertainty of data, a good quality module (with only a few strong associations) is expected to have low entropy while entropy increases as data is more uniformly distributed. Formally, for each module M, we partitioned the range from 0 to strength (M) into 10 bins of equal sizes and assigned loci according to their significance. In each bin, we computed the percentage of loci and defined the entr -- For an association to be specific in a given module, only a few regulatory associations should have highly significant p-values while the remaining loci are expected to have insignificant p-values. Thus, we defined the specificity of a module M as the area of a cumulative histogram of association significance values. Specifically, we partitioned the range from 0 to strength (M) into 10 bins of equal sizes and defined cj to be the cumulative percentage of j-th bin. Then the specificity is defined -- 3.1.2.   Analysis of GBM data -- 3.1.3.   Analysis of Ovarian Cancer Data -- 4.   Discussion -- Uncovering modules that are associated with genomic alterations in a disease is a challenging task as well as an important step to understand complex diseases. To address this challenge we introduced a novel technique - module cover - that extends the concept of set cover to network modules. We provided a mathematical formalization of the problem and developed two heuristic solutions: the Integrated Module Cover approach, which greedily selects genes to cover disease cases while simultaneously d.
In general, the module cover approach is especially helpful in analyzing and classifying heterogeneous disease cases by exploring the way different combinations of dys-regulated of modules relate to a particular disease subcategory. Indeed, our analysis indicated that the gene set selected by module cover approach may be used for classification. Equally important, the selected module covers may help to interpret classifications that were obtained with other methods. -- 5.   Materials -- 5.1 Data Treatment for Glioblastoma Multiforme Data from GMDI -- Differentially Expressed Genes: Briefly, all samples were profiled using HG-U133 Plus 2.0 arrays that were normalized at the probe level with dChip (16, 19). Among probes representing each gene, we chose the probeset with the highest mean intensity in the tumor and control samples. We determined genes that are differentially expressed in each disease case compared to the non-tumor control cases with a Z-test. For a gene g and case c, we define cover(c, g) to be 1 if nominal p-value &lt -- 0.01 and 0 -- eQTL Profiles: To detect copy number alterations, samples were hybridized on the Genechip Human Mapping 100K arrays, and copy numbers were calculated using Affymetrix Copy Number Analysis Tool (CNAT 4). After probe-level normalization and summarization, calculated log2-tranformed ratios were used to estimate raw copy numbers. Using a Gaussian approach, raw SNP profiles were smoothed (&gt -- 500 kb window by default) and segmented with a Hidden Markov Model approach (20-22). We first performed local c -- 5.2 Data Treatment for Ovarian Cancer Data from TCGA -- 4pendergrass -- 5perez-rathke -- 0intro-pm-rev.pdf -- 1biswas -- 2crawford -- 3flores -- 4huang -- 5li.
Alzheimer's disease (AD) is one of the leading causes of death for older people in US with rapidly increasing incidence. AD irreversibly and progressively damages the brain, but there are treatments in clinical trials to potentially slow the developme... -- 1. Introduction -- 2.1 Utilizing VARiant Informing MEDicine (VARIMED) -- 3 Result -- 5 Acknowledgments -- 6province -- 0intro-ppg.pdf -- 1bayzid -- 2degnan -- 3kopelman -- 4lin -- 5roch -- 1brown -- 2ding -- 3moore -- 4schrider -- 5singh -- 0intro-text.pdf -- 1bush -- 2holzinger -- 3hu -- 4kolchinsky -- 5seedorff -- 6verspoor -- 1modeling.pdf -- 3ccmp -- 4pm.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Dunker, A Keith.
Hunter, Lawrence.
Murray, Tiffany A.
Klein, Teri E.
Print version: Altman, Russ B Biocomputing 2013 - Proceedings Of The Pacific Symposium Singapore : World Scientific Publishing Company,c2012 9789814596367
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6383185 Click to View
language English
format eBook
author Altman, Russ B.
spellingShingle Altman, Russ B.
Biocomputing 2013 - Proceedings Of The Pacific Symposium.
Intro -- Modeling cell heterogeneity: from single-cell variations to mixed cells populations 445 -- Computational Challenges of Mass Phenotyping 454 -- The Future of Genome-Based Medicine 456 -- 0session-intro-cdr.pdf -- 1cheng -- 1.   Introduction -- 2.   Methods -- 2.1.   Data sources and data processing -- 2.2.   Pair-wise similarity scores -- 2.3.   Method nomenclature -- 2.4.   AUCs and p-values -- 2.5.   Expression signal strength -- 3.   Results -- 4.   Discussion -- 5.   Acknowledgments -- 2felciano -- 3phatak -- 4shi -- 5wang -- 0intro-epigenomics.pdf -- 1ahn -- 2luo -- 3sahu -- 1gabr -- 2gevaert -- 3kim -- 1.   Introduction -- 2.   Methods -- 2.1.   Introduction of the Module Cover Problem -- 2.2.   Integrated Module Cover -- 2.3.   Two-Step Module Cover -- 3.   Results -- 3.1.   Analysis of Glioblastoma Multiforme Data from GMDI -- 3.1.1.   Comparison of the Module Cover approaches. -- We applied the integrated greedy module cover algorithm with k = 300 and = 1, allowing 5 samples (3%) to be covered less than k times to exclude outliers. We discuss the more detailed parameter selection in online Appendix Section 2. In particular, we found that the number of non-trivial modules (i.e. ≥ 3 genes) starts to level with k = 300, prompting us to choose this parameter value for our main analysis. We obtained 249 modules that contained a total of 513 genes including 41 non-singleton.
We also computed the entropy of association profiles for each module. Since entropy measures the uncertainty of data, a good quality module (with only a few strong associations) is expected to have low entropy while entropy increases as data is more uniformly distributed. Formally, for each module M, we partitioned the range from 0 to strength (M) into 10 bins of equal sizes and assigned loci according to their significance. In each bin, we computed the percentage of loci and defined the entr -- For an association to be specific in a given module, only a few regulatory associations should have highly significant p-values while the remaining loci are expected to have insignificant p-values. Thus, we defined the specificity of a module M as the area of a cumulative histogram of association significance values. Specifically, we partitioned the range from 0 to strength (M) into 10 bins of equal sizes and defined cj to be the cumulative percentage of j-th bin. Then the specificity is defined -- 3.1.2.   Analysis of GBM data -- 3.1.3.   Analysis of Ovarian Cancer Data -- 4.   Discussion -- Uncovering modules that are associated with genomic alterations in a disease is a challenging task as well as an important step to understand complex diseases. To address this challenge we introduced a novel technique - module cover - that extends the concept of set cover to network modules. We provided a mathematical formalization of the problem and developed two heuristic solutions: the Integrated Module Cover approach, which greedily selects genes to cover disease cases while simultaneously d.
In general, the module cover approach is especially helpful in analyzing and classifying heterogeneous disease cases by exploring the way different combinations of dys-regulated of modules relate to a particular disease subcategory. Indeed, our analysis indicated that the gene set selected by module cover approach may be used for classification. Equally important, the selected module covers may help to interpret classifications that were obtained with other methods. -- 5.   Materials -- 5.1 Data Treatment for Glioblastoma Multiforme Data from GMDI -- Differentially Expressed Genes: Briefly, all samples were profiled using HG-U133 Plus 2.0 arrays that were normalized at the probe level with dChip (16, 19). Among probes representing each gene, we chose the probeset with the highest mean intensity in the tumor and control samples. We determined genes that are differentially expressed in each disease case compared to the non-tumor control cases with a Z-test. For a gene g and case c, we define cover(c, g) to be 1 if nominal p-value &lt -- 0.01 and 0 -- eQTL Profiles: To detect copy number alterations, samples were hybridized on the Genechip Human Mapping 100K arrays, and copy numbers were calculated using Affymetrix Copy Number Analysis Tool (CNAT 4). After probe-level normalization and summarization, calculated log2-tranformed ratios were used to estimate raw copy numbers. Using a Gaussian approach, raw SNP profiles were smoothed (&gt -- 500 kb window by default) and segmented with a Hidden Markov Model approach (20-22). We first performed local c -- 5.2 Data Treatment for Ovarian Cancer Data from TCGA -- 4pendergrass -- 5perez-rathke -- 0intro-pm-rev.pdf -- 1biswas -- 2crawford -- 3flores -- 4huang -- 5li.
Alzheimer's disease (AD) is one of the leading causes of death for older people in US with rapidly increasing incidence. AD irreversibly and progressively damages the brain, but there are treatments in clinical trials to potentially slow the developme... -- 1. Introduction -- 2.1 Utilizing VARiant Informing MEDicine (VARIMED) -- 3 Result -- 5 Acknowledgments -- 6province -- 0intro-ppg.pdf -- 1bayzid -- 2degnan -- 3kopelman -- 4lin -- 5roch -- 1brown -- 2ding -- 3moore -- 4schrider -- 5singh -- 0intro-text.pdf -- 1bush -- 2holzinger -- 3hu -- 4kolchinsky -- 5seedorff -- 6verspoor -- 1modeling.pdf -- 3ccmp -- 4pm.
author_facet Altman, Russ B.
Dunker, A Keith.
Hunter, Lawrence.
Murray, Tiffany A.
Klein, Teri E.
author_variant r b a rb rba
author2 Dunker, A Keith.
Hunter, Lawrence.
Murray, Tiffany A.
Klein, Teri E.
author2_variant a k d ak akd
l h lh
t a m ta tam
t e k te tek
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Altman, Russ B.
title Biocomputing 2013 - Proceedings Of The Pacific Symposium.
title_full Biocomputing 2013 - Proceedings Of The Pacific Symposium.
title_fullStr Biocomputing 2013 - Proceedings Of The Pacific Symposium.
title_full_unstemmed Biocomputing 2013 - Proceedings Of The Pacific Symposium.
title_auth Biocomputing 2013 - Proceedings Of The Pacific Symposium.
title_new Biocomputing 2013 - Proceedings Of The Pacific Symposium.
title_sort biocomputing 2013 - proceedings of the pacific symposium.
publisher World Scientific Publishing Company,
publishDate 2012
physical 1 online resource (471 pages)
edition 1st ed.
contents Intro -- Modeling cell heterogeneity: from single-cell variations to mixed cells populations 445 -- Computational Challenges of Mass Phenotyping 454 -- The Future of Genome-Based Medicine 456 -- 0session-intro-cdr.pdf -- 1cheng -- 1.   Introduction -- 2.   Methods -- 2.1.   Data sources and data processing -- 2.2.   Pair-wise similarity scores -- 2.3.   Method nomenclature -- 2.4.   AUCs and p-values -- 2.5.   Expression signal strength -- 3.   Results -- 4.   Discussion -- 5.   Acknowledgments -- 2felciano -- 3phatak -- 4shi -- 5wang -- 0intro-epigenomics.pdf -- 1ahn -- 2luo -- 3sahu -- 1gabr -- 2gevaert -- 3kim -- 1.   Introduction -- 2.   Methods -- 2.1.   Introduction of the Module Cover Problem -- 2.2.   Integrated Module Cover -- 2.3.   Two-Step Module Cover -- 3.   Results -- 3.1.   Analysis of Glioblastoma Multiforme Data from GMDI -- 3.1.1.   Comparison of the Module Cover approaches. -- We applied the integrated greedy module cover algorithm with k = 300 and = 1, allowing 5 samples (3%) to be covered less than k times to exclude outliers. We discuss the more detailed parameter selection in online Appendix Section 2. In particular, we found that the number of non-trivial modules (i.e. ≥ 3 genes) starts to level with k = 300, prompting us to choose this parameter value for our main analysis. We obtained 249 modules that contained a total of 513 genes including 41 non-singleton.
We also computed the entropy of association profiles for each module. Since entropy measures the uncertainty of data, a good quality module (with only a few strong associations) is expected to have low entropy while entropy increases as data is more uniformly distributed. Formally, for each module M, we partitioned the range from 0 to strength (M) into 10 bins of equal sizes and assigned loci according to their significance. In each bin, we computed the percentage of loci and defined the entr -- For an association to be specific in a given module, only a few regulatory associations should have highly significant p-values while the remaining loci are expected to have insignificant p-values. Thus, we defined the specificity of a module M as the area of a cumulative histogram of association significance values. Specifically, we partitioned the range from 0 to strength (M) into 10 bins of equal sizes and defined cj to be the cumulative percentage of j-th bin. Then the specificity is defined -- 3.1.2.   Analysis of GBM data -- 3.1.3.   Analysis of Ovarian Cancer Data -- 4.   Discussion -- Uncovering modules that are associated with genomic alterations in a disease is a challenging task as well as an important step to understand complex diseases. To address this challenge we introduced a novel technique - module cover - that extends the concept of set cover to network modules. We provided a mathematical formalization of the problem and developed two heuristic solutions: the Integrated Module Cover approach, which greedily selects genes to cover disease cases while simultaneously d.
In general, the module cover approach is especially helpful in analyzing and classifying heterogeneous disease cases by exploring the way different combinations of dys-regulated of modules relate to a particular disease subcategory. Indeed, our analysis indicated that the gene set selected by module cover approach may be used for classification. Equally important, the selected module covers may help to interpret classifications that were obtained with other methods. -- 5.   Materials -- 5.1 Data Treatment for Glioblastoma Multiforme Data from GMDI -- Differentially Expressed Genes: Briefly, all samples were profiled using HG-U133 Plus 2.0 arrays that were normalized at the probe level with dChip (16, 19). Among probes representing each gene, we chose the probeset with the highest mean intensity in the tumor and control samples. We determined genes that are differentially expressed in each disease case compared to the non-tumor control cases with a Z-test. For a gene g and case c, we define cover(c, g) to be 1 if nominal p-value &lt -- 0.01 and 0 -- eQTL Profiles: To detect copy number alterations, samples were hybridized on the Genechip Human Mapping 100K arrays, and copy numbers were calculated using Affymetrix Copy Number Analysis Tool (CNAT 4). After probe-level normalization and summarization, calculated log2-tranformed ratios were used to estimate raw copy numbers. Using a Gaussian approach, raw SNP profiles were smoothed (&gt -- 500 kb window by default) and segmented with a Hidden Markov Model approach (20-22). We first performed local c -- 5.2 Data Treatment for Ovarian Cancer Data from TCGA -- 4pendergrass -- 5perez-rathke -- 0intro-pm-rev.pdf -- 1biswas -- 2crawford -- 3flores -- 4huang -- 5li.
Alzheimer's disease (AD) is one of the leading causes of death for older people in US with rapidly increasing incidence. AD irreversibly and progressively damages the brain, but there are treatments in clinical trials to potentially slow the developme... -- 1. Introduction -- 2.1 Utilizing VARiant Informing MEDicine (VARIMED) -- 3 Result -- 5 Acknowledgments -- 6province -- 0intro-ppg.pdf -- 1bayzid -- 2degnan -- 3kopelman -- 4lin -- 5roch -- 1brown -- 2ding -- 3moore -- 4schrider -- 5singh -- 0intro-text.pdf -- 1bush -- 2holzinger -- 3hu -- 4kolchinsky -- 5seedorff -- 6verspoor -- 1modeling.pdf -- 3ccmp -- 4pm.
isbn 9789814447973
9789814596367
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6383185
illustrated Not Illustrated
oclc_num 1165177092
work_keys_str_mv AT altmanrussb biocomputing2013proceedingsofthepacificsymposium
AT dunkerakeith biocomputing2013proceedingsofthepacificsymposium
AT hunterlawrence biocomputing2013proceedingsofthepacificsymposium
AT murraytiffanya biocomputing2013proceedingsofthepacificsymposium
AT kleinterie biocomputing2013proceedingsofthepacificsymposium
status_str n
ids_txt_mv (MiAaPQ)5006383185
(Au-PeEL)EBL6383185
(OCoLC)1165177092
carrierType_str_mv cr
is_hierarchy_title Biocomputing 2013 - Proceedings Of The Pacific Symposium.
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331057092100096
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07258nam a22004453i 4500</leader><controlfield tag="001">5006383185</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073836.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2012 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814447973</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814596367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006383185</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6383185</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165177092</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Altman, Russ B.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biocomputing 2013 - Proceedings Of The Pacific Symposium.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">World Scientific Publishing Company,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (471 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Modeling cell heterogeneity: from single-cell variations to mixed cells populations 445 -- Computational Challenges of Mass Phenotyping 454 -- The Future of Genome-Based Medicine 456 -- 0session-intro-cdr.pdf -- 1cheng -- 1.   Introduction -- 2.   Methods -- 2.1.   Data sources and data processing -- 2.2.   Pair-wise similarity scores -- 2.3.   Method nomenclature -- 2.4.   AUCs and p-values -- 2.5.   Expression signal strength -- 3.   Results -- 4.   Discussion -- 5.   Acknowledgments -- 2felciano -- 3phatak -- 4shi -- 5wang -- 0intro-epigenomics.pdf -- 1ahn -- 2luo -- 3sahu -- 1gabr -- 2gevaert -- 3kim -- 1.   Introduction -- 2.   Methods -- 2.1.   Introduction of the Module Cover Problem -- 2.2.   Integrated Module Cover -- 2.3.   Two-Step Module Cover -- 3.   Results -- 3.1.   Analysis of Glioblastoma Multiforme Data from GMDI -- 3.1.1.   Comparison of the Module Cover approaches. -- We applied the integrated greedy module cover algorithm with k = 300 and = 1, allowing 5 samples (3%) to be covered less than k times to exclude outliers. We discuss the more detailed parameter selection in online Appendix Section 2. In particular, we found that the number of non-trivial modules (i.e. ≥ 3 genes) starts to level with k = 300, prompting us to choose this parameter value for our main analysis. We obtained 249 modules that contained a total of 513 genes including 41 non-singleton.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">We also computed the entropy of association profiles for each module. Since entropy measures the uncertainty of data, a good quality module (with only a few strong associations) is expected to have low entropy while entropy increases as data is more uniformly distributed. Formally, for each module M, we partitioned the range from 0 to strength (M) into 10 bins of equal sizes and assigned loci according to their significance. In each bin, we computed the percentage of loci and defined the entr -- For an association to be specific in a given module, only a few regulatory associations should have highly significant p-values while the remaining loci are expected to have insignificant p-values. Thus, we defined the specificity of a module M as the area of a cumulative histogram of association significance values. Specifically, we partitioned the range from 0 to strength (M) into 10 bins of equal sizes and defined cj to be the cumulative percentage of j-th bin. Then the specificity is defined -- 3.1.2.   Analysis of GBM data -- 3.1.3.   Analysis of Ovarian Cancer Data -- 4.   Discussion -- Uncovering modules that are associated with genomic alterations in a disease is a challenging task as well as an important step to understand complex diseases. To address this challenge we introduced a novel technique - module cover - that extends the concept of set cover to network modules. We provided a mathematical formalization of the problem and developed two heuristic solutions: the Integrated Module Cover approach, which greedily selects genes to cover disease cases while simultaneously d.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">In general, the module cover approach is especially helpful in analyzing and classifying heterogeneous disease cases by exploring the way different combinations of dys-regulated of modules relate to a particular disease subcategory. Indeed, our analysis indicated that the gene set selected by module cover approach may be used for classification. Equally important, the selected module covers may help to interpret classifications that were obtained with other methods. -- 5.   Materials -- 5.1 Data Treatment for Glioblastoma Multiforme Data from GMDI -- Differentially Expressed Genes: Briefly, all samples were profiled using HG-U133 Plus 2.0 arrays that were normalized at the probe level with dChip (16, 19). Among probes representing each gene, we chose the probeset with the highest mean intensity in the tumor and control samples. We determined genes that are differentially expressed in each disease case compared to the non-tumor control cases with a Z-test. For a gene g and case c, we define cover(c, g) to be 1 if nominal p-value &amp;lt -- 0.01 and 0 -- eQTL Profiles: To detect copy number alterations, samples were hybridized on the Genechip Human Mapping 100K arrays, and copy numbers were calculated using Affymetrix Copy Number Analysis Tool (CNAT 4). After probe-level normalization and summarization, calculated log2-tranformed ratios were used to estimate raw copy numbers. Using a Gaussian approach, raw SNP profiles were smoothed (&amp;gt -- 500 kb window by default) and segmented with a Hidden Markov Model approach (20-22). We first performed local c -- 5.2 Data Treatment for Ovarian Cancer Data from TCGA -- 4pendergrass -- 5perez-rathke -- 0intro-pm-rev.pdf -- 1biswas -- 2crawford -- 3flores -- 4huang -- 5li.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Alzheimer's disease (AD) is one of the leading causes of death for older people in US with rapidly increasing incidence. AD irreversibly and progressively damages the brain, but there are treatments in clinical trials to potentially slow the developme... -- 1. Introduction -- 2.1 Utilizing VARiant Informing MEDicine (VARIMED) -- 3 Result -- 5 Acknowledgments -- 6province -- 0intro-ppg.pdf -- 1bayzid -- 2degnan -- 3kopelman -- 4lin -- 5roch -- 1brown -- 2ding -- 3moore -- 4schrider -- 5singh -- 0intro-text.pdf -- 1bush -- 2holzinger -- 3hu -- 4kolchinsky -- 5seedorff -- 6verspoor -- 1modeling.pdf -- 3ccmp -- 4pm.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dunker, A Keith.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hunter, Lawrence.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murray, Tiffany A.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klein, Teri E.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Altman, Russ B</subfield><subfield code="t">Biocomputing 2013 - Proceedings Of The Pacific Symposium</subfield><subfield code="d">Singapore : World Scientific Publishing Company,c2012</subfield><subfield code="z">9789814596367</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6383185</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>