Quantization on Nilpotent Lie Groups.

Saved in:
Bibliographic Details
Superior document:Progress in Mathematics Series ; v.314
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2016.
©2016.
Year of Publication:2016
Edition:1st ed.
Language:English
Series:Progress in Mathematics Series
Online Access:
Physical Description:1 online resource (568 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Introduction
  • Nilpotent Lie groups by themselves and as local models
  • Hypoellipticity and Rockland operators
  • Pseudo-differential operators
  • Quantization on homogeneous Lie groups and the book structure
  • Notation and conventions
  • Chapter 1 Preliminaries on Lie groups
  • 1.1 Lie groups, representations, and Fourier transform
  • Representations
  • Haar measure
  • Fourier analysis
  • 1.2 Lie algebras and vector fields
  • 1.3 Universal enveloping algebra and differential operators
  • 1.4 Distributions and Schwartz kernel theorem
  • 1.5 Convolutions
  • Convolution of distributions
  • 1.6 Nilpotent Lie groups and algebras
  • 1.7 Smooth vectors and infinitesimal representations
  • 1.8 Plancherel theorem
  • 1.8.1 Orbit method
  • 1.8.2 Plancherel theorem and group von Neumann algebras
  • Our framework
  • The Plancherel formula
  • Group von Neumann algebra
  • The abstract Plancherel theorem
  • 1.8.3 Fields of operators acting on smooth vectors
  • Chapter 2 Quantization on compact Lie groups
  • 2.1 Fourier analysis on compact Lie groups
  • 2.1.1 Characters and tensor products
  • 2.1.2 Peter-Weyl theorem
  • 2.1.3 Spaces of functions and distributions on G
  • Distributions
  • Gevrey spaces and ultradistributions
  • 2.1.4 lp-spages on the unitary dual G
  • 2.2 Pseudo-differential operators on compact Lie groups
  • 2.2.1 Symbols and quantization
  • 2.2.2 Difference operators and symbol classes
  • 2.2.3 Symbolic calculus, ellipticity, hypoellipticity
  • 2.2.4 Fourier multipliers and Lp-boundedness
  • 2.2.5 Sharp Garding inequality
  • Chapter 3 Homogeneous Lie groups
  • 3.1 Graded and homogeneous Lie groups
  • 3.1.1 Definition and examples of graded Lie groups
  • 3.1.2 Definition and examples of homogeneous Lie groups
  • 3.1.3 Homogeneous structure
  • Homogeneity
  • 3.1.4 Polynomials.
  • 3.1.5 Invariant differential operators on homogeneous Lie groups
  • 3.1.6 Homogeneous quasi-norms
  • 3.1.7 Polar coordinates
  • 3.1.8 Mean value theorem and Taylor expansion
  • Taylor expansion
  • 3.1.9 Schwartz space and tempered distributions
  • 3.1.10 Approximation of the identity
  • 3.2 Operators on homogeneous Lie groups
  • 3.2.1 Left-invariant operators on homogeneous Lie groups
  • 3.2.2 Left-invariant homogeneous operators
  • 3.2.3 Singular integral operators on homogeneous Lie groups
  • 3.2.4 Principal value distribution
  • 3.2.5 Operators of type ν = 0
  • 3.2.6 Properties of kernels of type ν, Re ν E [0,Q)
  • 3.2.7 Fundamental solutions of homogeneous differential operators
  • 3.2.8 Liouville's theorem on homogeneous Lie groups
  • Chapter 4 Rockland operators and Sobolev spaces
  • 4.1 Rockland operators
  • 4.1.1 Definition of Rockland operators
  • 4.1.2 Examples of Rockland operators
  • 4.1.3 Hypoellipticity and functional calculus
  • 4.2 Positive Rockland operators
  • 4.2.1 First properties
  • 4.2.2 The heat semi-group and the heat kernel
  • 4.2.3 Proof of the heat kernel theorem and its corollaries
  • 4.3 Fractional powers of positive Rockland operators
  • 4.3.1 Positive Rockland operators on Lp
  • 4.3.2 Fractional powers of operators Rp
  • 4.3.3 Imaginary powers of Rp and I + Rp
  • 4.3.4 Riesz and Bessel potentials
  • 4.4 Sobolev spaces on graded Lie groups
  • 4.4.1 (Inhomogeneous) Sobolev spaces
  • 4.4.2 Interpolation between inhomogeneous Sobolev spaces
  • 4.4.3 Homogeneous Sobolev spaces
  • 4.4.4 Operators acting on Sobolev spaces
  • 4.4.5 Independence in Rockland operators and integer orders
  • 4.4.6 Sobolev embeddings
  • Local results
  • Global results
  • 4.4.7 List of properties for the Sobolev spaces
  • Properties of L2s(G)
  • 4.4.8 Right invariant Rockland operators and Sobolev spaces
  • 4.5 Hulanicki's theorem
  • 4.5.1 Statement.
  • 4.5.2 Proof of Hulanicki's theorem
  • First step
  • Second step
  • Main technical lemma
  • Last step
  • 4.5.3 Proof of Corollary 4.5.2
  • Chapter 5 Quantization on graded Lie groups
  • 5.1 Symbols and quantization
  • 5.1.1 Fourier transform on Sobolev spaces
  • 5.1.2 The spaces Ka,b(G), LL(L2a(G), L2b(G)), and L∞a,b(G)
  • 5.1.3 Symbols and associated kernels
  • 5.1.4 Quantization formula
  • 5.2 Symbol classes Smρ,δ and operator classes Ψmρ,δ
  • 5.2.1 Difference operators
  • 5.2.2 Symbol classes Smρ,δ
  • 5.2.3 Operator classes Ψmρ,δ
  • 5.2.4 First examples
  • 5.2.5 First properties of symbol classes
  • 5.3 Spectral multipliers in positive Rockland operators
  • 5.3.1 Multipliers in one positive Rockland operator
  • 5.3.2 Joint multipliers
  • 5.4 Kernels of pseudo-differential operators
  • 5.4.1 Estimates of the kernels
  • Estimates at infinity
  • 5.4.2 Smoothing operators and symbols
  • 5.4.3 Pseudo-differential operators as limits of smoothing operators
  • 5.4.4 Operators in Ψ0 as singular integral operators
  • 5.5 Symbolic calculus
  • 5.5.1 Asymptotic sums of symbols
  • 5.5.2 Composition of pseudo-differential operators
  • 5.5.3 Adjoint of a pseudo-differential operator
  • 5.5.4 Simplification of the definition of Smρ,δ
  • 5.6 Amplitudes and amplitude operators
  • 5.6.1 Definition and quantization
  • 5.6.2 Amplitude classes
  • 5.6.3 Properties of amplitude classes and kernels
  • 5.6.4 Link between symbols and amplitudes
  • 5.7 Calderón-Vaillancourt theorem
  • 5.7.1 Analogue of the decomposition into unit cubes
  • 5.7.2 Proof of the case S00,0
  • 5.7.3 A bilinear estimate
  • 5.7.4 Proof of the case S0ρ,ρ
  • Strategy of the proof
  • 5.8 Parametrices, ellipticity and hypoellipticity
  • 5.8.1 Ellipticity
  • 5.8.2 Parametrix
  • 5.8.3 Subelliptic estimates and hypoellipticity
  • Local hypoelliptic properties
  • Global hypoelliptic-type properties.
  • Chapter 6 Pseudo-differential operators on the Heisenberg group
  • 6.1 Preliminaries
  • 6.1.1 Descriptions of the Heisenberg group
  • 6.1.2 Heisenberg Lie algebra and the stratified structure
  • 6.2 Dual of the Heisenberg group
  • 6.2.1 Schródinger representations πλ
  • 6.2.2 Group Fourier transform on the Heisenberg group
  • The Euclidean Fourier transform
  • The (Euclidean) Weyl quantization
  • The operator FHn(κ)(π1)
  • 6.2.3 Plancherel measure
  • 6.3 Difference operators Δxj and Δyj
  • 6.3.1 Difference operators Δxj and Δyj
  • 6.3.2 Difference operator Δt
  • 6.3.3 Formulae
  • 6.4 Shubin classes
  • 6.4.1 Weyl-Hörmander calculus
  • 6.4.2 Shubin classes Σmρ(Rn) and the harmonic oscillator
  • 6.4.3 Shubin Sobolev spaces
  • 6.4.4 The λ-Shubin classes Σmρ,λ(Rn)
  • 6.4.5 Commutator characterisation of λ-Shubin classes
  • 6.5 Quantization and symbol classes Smρ,δ on the Heisenberg group
  • 6.5.1 Quantization on the Heisenberg group
  • 6.5.2 An equivalent family of seminorms on Smρ,δ = Smρ,δ(Hn)
  • 6.5.3 Characterisation of Smρ,δ(Hn)
  • 6.6 Parametrices
  • 6.6.1 Condition for ellipticity
  • 6.6.2 Condition for hypoellipticity
  • 6.6.3 Subelliptic estimates and hypoellipticity
  • Appendix A Miscellaneous
  • A.1 General properties of hypoelliptic operators
  • A.2 Semi-groups of operators
  • A.3 Fractional powers of operators
  • A.4 Singular integrals (according to Coifman-Weiss)
  • Calderón-Zygmund kernels on Rn
  • A.5 Almost orthogonality
  • A.6 Interpolation of analytic families of operators
  • Appendix B Group C* and von Neumann
  • B.1 Direct integral of Hilbert spaces
  • B.1.1 Convention: Hilbert spaces are assumed separable
  • B.1.2 Measurable fields of vectors
  • B.1.3 Direct integral of tensor products of Hilbert spaces
  • Definition of tensor products
  • Tensor products of Hilbert spaces as Hilbert-Schmidt spaces.
  • Direct integral of tensor products of Hilbert spaces
  • B.1.4 Separability of a direct integral of Hilbert spaces
  • B.1.5 Measurable fields of operators
  • B.1.6 Integral of representations
  • B.2 C*- and von Neumann algebras
  • B.2.1 Generalities on algebras
  • Algebra
  • Commutant and bi-commutant
  • Involution and norms
  • B.2.2 C*-algebras
  • B.2.3 Group C*-algebras
  • Reduced group C*-algebra
  • Pontryagin duality
  • B.2.4 Von Neumann algebras
  • B.2.5 Group von Neumann algebra
  • B.2.6 Decomposition of group von Neumann algebras and abstract Plancherel theorem
  • Schródinger representations and Weyl quantization
  • Explicit symbolic calculus on the Heisenberg group
  • List of quantizations
  • Bibliography
  • Index.