European Guide to Power System Testing : : The ERIGrid Holistic Approach for Evaluating Complex Smart Grid Configurations.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2020.
Ã2020.
Year of Publication:2020
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (141 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006363174
ctrlnum (MiAaPQ)5006363174
(Au-PeEL)EBL6363174
(OCoLC)1163828760
collection bib_alma
record_format marc
spelling Strasser, Thomas I.
European Guide to Power System Testing : The ERIGrid Holistic Approach for Evaluating Complex Smart Grid Configurations.
1st ed.
Cham : Springer International Publishing AG, 2020.
Ã2020.
1 online resource (141 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Preface -- Contents -- Acronyms -- Towards System-Level Validation -- 1 Higher Complexity in Future Power Systems -- 2 Needs for System-Level Validation -- 2.1 Engineering and Validation Process -- 2.2 Towards a System Validation Approach -- 2.3 Illustrative Example -- 3 Existing Approaches and Research Directions -- 3.1 Suitable Methods and Tools -- 3.2 Future Research Directions -- 4 Overview of the ERIGrid Validation Approach -- References -- Test Procedure and Description for System Testing -- 1 Introduction -- 1.1 Testing Procedure and Test Description -- 1.2 Holistic Testing for System Validation -- 2 Toward Procedures for System Validation -- 2.1 Purpose of Testing in the Development Process -- 2.2 The Need for System Testing and Its Support -- 2.3 A Generic Procedure for System Validation -- 2.4 Testing Chain -- 3 ERIGrid Holistic Test Description Methodology -- 3.1 The Requirements and Semantics of Test Description -- 3.2 The ERIGrid Test Description for System Validation -- 3.3 Holistic Test Description: Key Concepts -- 3.4 Remarks on Quantitative Assessment -- 4 Application Examples -- 4.1 Example 1: Testing Chain -- 4.2 Example 2: Coordinated Voltage Control -- 5 Conclusion -- References -- Simulation-Based Assessment Methods -- 1 Introduction to Smart Grid Modelling and Simulation -- 2 Co-simulation Based Assessment -- 2.1 Introduction to Co-simulation, Goals, and Challenges -- 2.2 Current Co-simulation Standards and Their Functionality -- 3 Co-simulation Framework for Smart-Grid Assessment -- 3.1 Co-simulation Interfaces Based on FMI -- 3.2 Mosaik for Scenario Development and Simulation Orchestration -- 4 Scaling Considerations -- 5 Fault Ride-Through of a Wind Park Example -- 5.1 Experiment Setup and Objectives -- 5.2 Results -- 6 Conclusion -- References -- Hardware-in-the-Loop Assessment Methods -- 1 Introduction.
2 HIL Techniques for Validation of Smart Grid Solutions -- 2.1 Stability of HIL Experiments -- 2.2 Stability Assessment -- 2.3 Approaches for the Compensation of Time Delay -- 3 Integration of HIL Techniques into a Holistic Framework -- 3.1 Simulation Message-Bus Based Solutions: Lab-Link and OPSIM -- 3.2 Online Integration with SCADA as a Service Approach -- 3.3 Quasi-static PHIL/PSIL -- 4 Coordinated Voltage Control of a Microgrid Example -- 4.1 CHIL Implementation via Lab-Link -- 4.2 Multi-platform CHIL Implementation via OpSim Architecture -- 4.3 PHIL and PSIL Implementation in PRISMES Platform -- 5 Summary -- References -- Laboratory Coupling Approach -- 1 Introduction -- 1.1 State-of-the-Art for Smart Grid Testing -- 1.2 Multi-infrastructure Integration -- 2 JaNDER Communication Platform for Lab-Coupling -- 2.1 Features of the Cloud-Based Communication Platform -- 2.2 Basic Data Sharing via JaNDER-L0 -- 2.3 IEC 61850-Based Communication Platform via JaNDER-L1 -- 2.4 CIM-based Communication Platform via JaNDER-L2 -- 3 Integrated Research Infrastructure -- 3.1 Hardware/Software Integration Between Different Laboratories -- 3.2 Virtual Research Infrastructure -- 4 Examples of Laboratory Couplings -- 4.1 Integration of a Remote OLTC Controller via IEC 61850 -- 4.2 State Estimator Web Service -- 4.3 Geographically Distributed Real-Time Simulation -- 4.4 Real-Time Geographically Distributed CHIL -- 4.5 Real-Time Geographically Distributed PHIL -- 5 Conclusion -- References -- From Scenarios to Use Cases, Test Cases and Validation Examples -- 1 Test Scenario Descriptions -- 2 ERIGrid Generic System Configurations -- 3 Focal Use Cases -- 4 Test Cases -- 5 System Validation Examples -- 5.1 Analysis of the Centralized Voltage Control for Rhodes Island -- 5.2 Converter Controller Development -- 6 Conclusions -- References.
Experiences with System-Level Validation Approach -- 1 Introduction to Users and Experiences -- 2 Application of System-Level Validation Approach in Projects -- 3 Evaluation of Representative Test Cases -- 4 Evaluation of the Holistic Test Description Methodology -- 4.1 Results of Work with ERIGrid Services Questionnaire -- 4.2 Results of Data Specification Questionnaire -- 5 Advantages and Shortcomings of Holistic Validation Methodology -- 5.1 Advantages of the Holistic Validation Methodology -- 5.2 Shortcomings of the Holistic Validation Methodology -- 6 Conclusion -- References -- Education and Training Needs, Methods, and Tools -- 1 Introduction -- 2 Learning Needs for Modern Power and Energy Education -- 3 Laboratory Education -- 3.1 Real-Time Simulation for Laboratory Education -- 3.2 Remote Laboratories -- 4 Simulation-Based Tools -- 4.1 Co-simulation Tools -- 4.2 Interactive (Jupyter) Notebooks -- 5 Outreach Activities -- 5.1 Webinars -- 5.2 Training Schools and Workshops -- 6 Conclusions -- References -- Summary and Outlook -- 1 Conclusions -- 2 Future Work -- References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
de Jong, Erik C. W.
Sosnina, Maria.
Print version: Strasser, Thomas I. European Guide to Power System Testing Cham : Springer International Publishing AG,c2020 9783030422738
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6363174 Click to View
language English
format eBook
author Strasser, Thomas I.
spellingShingle Strasser, Thomas I.
European Guide to Power System Testing : The ERIGrid Holistic Approach for Evaluating Complex Smart Grid Configurations.
Intro -- Preface -- Contents -- Acronyms -- Towards System-Level Validation -- 1 Higher Complexity in Future Power Systems -- 2 Needs for System-Level Validation -- 2.1 Engineering and Validation Process -- 2.2 Towards a System Validation Approach -- 2.3 Illustrative Example -- 3 Existing Approaches and Research Directions -- 3.1 Suitable Methods and Tools -- 3.2 Future Research Directions -- 4 Overview of the ERIGrid Validation Approach -- References -- Test Procedure and Description for System Testing -- 1 Introduction -- 1.1 Testing Procedure and Test Description -- 1.2 Holistic Testing for System Validation -- 2 Toward Procedures for System Validation -- 2.1 Purpose of Testing in the Development Process -- 2.2 The Need for System Testing and Its Support -- 2.3 A Generic Procedure for System Validation -- 2.4 Testing Chain -- 3 ERIGrid Holistic Test Description Methodology -- 3.1 The Requirements and Semantics of Test Description -- 3.2 The ERIGrid Test Description for System Validation -- 3.3 Holistic Test Description: Key Concepts -- 3.4 Remarks on Quantitative Assessment -- 4 Application Examples -- 4.1 Example 1: Testing Chain -- 4.2 Example 2: Coordinated Voltage Control -- 5 Conclusion -- References -- Simulation-Based Assessment Methods -- 1 Introduction to Smart Grid Modelling and Simulation -- 2 Co-simulation Based Assessment -- 2.1 Introduction to Co-simulation, Goals, and Challenges -- 2.2 Current Co-simulation Standards and Their Functionality -- 3 Co-simulation Framework for Smart-Grid Assessment -- 3.1 Co-simulation Interfaces Based on FMI -- 3.2 Mosaik for Scenario Development and Simulation Orchestration -- 4 Scaling Considerations -- 5 Fault Ride-Through of a Wind Park Example -- 5.1 Experiment Setup and Objectives -- 5.2 Results -- 6 Conclusion -- References -- Hardware-in-the-Loop Assessment Methods -- 1 Introduction.
2 HIL Techniques for Validation of Smart Grid Solutions -- 2.1 Stability of HIL Experiments -- 2.2 Stability Assessment -- 2.3 Approaches for the Compensation of Time Delay -- 3 Integration of HIL Techniques into a Holistic Framework -- 3.1 Simulation Message-Bus Based Solutions: Lab-Link and OPSIM -- 3.2 Online Integration with SCADA as a Service Approach -- 3.3 Quasi-static PHIL/PSIL -- 4 Coordinated Voltage Control of a Microgrid Example -- 4.1 CHIL Implementation via Lab-Link -- 4.2 Multi-platform CHIL Implementation via OpSim Architecture -- 4.3 PHIL and PSIL Implementation in PRISMES Platform -- 5 Summary -- References -- Laboratory Coupling Approach -- 1 Introduction -- 1.1 State-of-the-Art for Smart Grid Testing -- 1.2 Multi-infrastructure Integration -- 2 JaNDER Communication Platform for Lab-Coupling -- 2.1 Features of the Cloud-Based Communication Platform -- 2.2 Basic Data Sharing via JaNDER-L0 -- 2.3 IEC 61850-Based Communication Platform via JaNDER-L1 -- 2.4 CIM-based Communication Platform via JaNDER-L2 -- 3 Integrated Research Infrastructure -- 3.1 Hardware/Software Integration Between Different Laboratories -- 3.2 Virtual Research Infrastructure -- 4 Examples of Laboratory Couplings -- 4.1 Integration of a Remote OLTC Controller via IEC 61850 -- 4.2 State Estimator Web Service -- 4.3 Geographically Distributed Real-Time Simulation -- 4.4 Real-Time Geographically Distributed CHIL -- 4.5 Real-Time Geographically Distributed PHIL -- 5 Conclusion -- References -- From Scenarios to Use Cases, Test Cases and Validation Examples -- 1 Test Scenario Descriptions -- 2 ERIGrid Generic System Configurations -- 3 Focal Use Cases -- 4 Test Cases -- 5 System Validation Examples -- 5.1 Analysis of the Centralized Voltage Control for Rhodes Island -- 5.2 Converter Controller Development -- 6 Conclusions -- References.
Experiences with System-Level Validation Approach -- 1 Introduction to Users and Experiences -- 2 Application of System-Level Validation Approach in Projects -- 3 Evaluation of Representative Test Cases -- 4 Evaluation of the Holistic Test Description Methodology -- 4.1 Results of Work with ERIGrid Services Questionnaire -- 4.2 Results of Data Specification Questionnaire -- 5 Advantages and Shortcomings of Holistic Validation Methodology -- 5.1 Advantages of the Holistic Validation Methodology -- 5.2 Shortcomings of the Holistic Validation Methodology -- 6 Conclusion -- References -- Education and Training Needs, Methods, and Tools -- 1 Introduction -- 2 Learning Needs for Modern Power and Energy Education -- 3 Laboratory Education -- 3.1 Real-Time Simulation for Laboratory Education -- 3.2 Remote Laboratories -- 4 Simulation-Based Tools -- 4.1 Co-simulation Tools -- 4.2 Interactive (Jupyter) Notebooks -- 5 Outreach Activities -- 5.1 Webinars -- 5.2 Training Schools and Workshops -- 6 Conclusions -- References -- Summary and Outlook -- 1 Conclusions -- 2 Future Work -- References.
author_facet Strasser, Thomas I.
de Jong, Erik C. W.
Sosnina, Maria.
author_variant t i s ti tis
author2 de Jong, Erik C. W.
Sosnina, Maria.
author2_variant j e c w d jecw jecwd
m s ms
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Strasser, Thomas I.
title European Guide to Power System Testing : The ERIGrid Holistic Approach for Evaluating Complex Smart Grid Configurations.
title_sub The ERIGrid Holistic Approach for Evaluating Complex Smart Grid Configurations.
title_full European Guide to Power System Testing : The ERIGrid Holistic Approach for Evaluating Complex Smart Grid Configurations.
title_fullStr European Guide to Power System Testing : The ERIGrid Holistic Approach for Evaluating Complex Smart Grid Configurations.
title_full_unstemmed European Guide to Power System Testing : The ERIGrid Holistic Approach for Evaluating Complex Smart Grid Configurations.
title_auth European Guide to Power System Testing : The ERIGrid Holistic Approach for Evaluating Complex Smart Grid Configurations.
title_new European Guide to Power System Testing :
title_sort european guide to power system testing : the erigrid holistic approach for evaluating complex smart grid configurations.
publisher Springer International Publishing AG,
publishDate 2020
physical 1 online resource (141 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- Acronyms -- Towards System-Level Validation -- 1 Higher Complexity in Future Power Systems -- 2 Needs for System-Level Validation -- 2.1 Engineering and Validation Process -- 2.2 Towards a System Validation Approach -- 2.3 Illustrative Example -- 3 Existing Approaches and Research Directions -- 3.1 Suitable Methods and Tools -- 3.2 Future Research Directions -- 4 Overview of the ERIGrid Validation Approach -- References -- Test Procedure and Description for System Testing -- 1 Introduction -- 1.1 Testing Procedure and Test Description -- 1.2 Holistic Testing for System Validation -- 2 Toward Procedures for System Validation -- 2.1 Purpose of Testing in the Development Process -- 2.2 The Need for System Testing and Its Support -- 2.3 A Generic Procedure for System Validation -- 2.4 Testing Chain -- 3 ERIGrid Holistic Test Description Methodology -- 3.1 The Requirements and Semantics of Test Description -- 3.2 The ERIGrid Test Description for System Validation -- 3.3 Holistic Test Description: Key Concepts -- 3.4 Remarks on Quantitative Assessment -- 4 Application Examples -- 4.1 Example 1: Testing Chain -- 4.2 Example 2: Coordinated Voltage Control -- 5 Conclusion -- References -- Simulation-Based Assessment Methods -- 1 Introduction to Smart Grid Modelling and Simulation -- 2 Co-simulation Based Assessment -- 2.1 Introduction to Co-simulation, Goals, and Challenges -- 2.2 Current Co-simulation Standards and Their Functionality -- 3 Co-simulation Framework for Smart-Grid Assessment -- 3.1 Co-simulation Interfaces Based on FMI -- 3.2 Mosaik for Scenario Development and Simulation Orchestration -- 4 Scaling Considerations -- 5 Fault Ride-Through of a Wind Park Example -- 5.1 Experiment Setup and Objectives -- 5.2 Results -- 6 Conclusion -- References -- Hardware-in-the-Loop Assessment Methods -- 1 Introduction.
2 HIL Techniques for Validation of Smart Grid Solutions -- 2.1 Stability of HIL Experiments -- 2.2 Stability Assessment -- 2.3 Approaches for the Compensation of Time Delay -- 3 Integration of HIL Techniques into a Holistic Framework -- 3.1 Simulation Message-Bus Based Solutions: Lab-Link and OPSIM -- 3.2 Online Integration with SCADA as a Service Approach -- 3.3 Quasi-static PHIL/PSIL -- 4 Coordinated Voltage Control of a Microgrid Example -- 4.1 CHIL Implementation via Lab-Link -- 4.2 Multi-platform CHIL Implementation via OpSim Architecture -- 4.3 PHIL and PSIL Implementation in PRISMES Platform -- 5 Summary -- References -- Laboratory Coupling Approach -- 1 Introduction -- 1.1 State-of-the-Art for Smart Grid Testing -- 1.2 Multi-infrastructure Integration -- 2 JaNDER Communication Platform for Lab-Coupling -- 2.1 Features of the Cloud-Based Communication Platform -- 2.2 Basic Data Sharing via JaNDER-L0 -- 2.3 IEC 61850-Based Communication Platform via JaNDER-L1 -- 2.4 CIM-based Communication Platform via JaNDER-L2 -- 3 Integrated Research Infrastructure -- 3.1 Hardware/Software Integration Between Different Laboratories -- 3.2 Virtual Research Infrastructure -- 4 Examples of Laboratory Couplings -- 4.1 Integration of a Remote OLTC Controller via IEC 61850 -- 4.2 State Estimator Web Service -- 4.3 Geographically Distributed Real-Time Simulation -- 4.4 Real-Time Geographically Distributed CHIL -- 4.5 Real-Time Geographically Distributed PHIL -- 5 Conclusion -- References -- From Scenarios to Use Cases, Test Cases and Validation Examples -- 1 Test Scenario Descriptions -- 2 ERIGrid Generic System Configurations -- 3 Focal Use Cases -- 4 Test Cases -- 5 System Validation Examples -- 5.1 Analysis of the Centralized Voltage Control for Rhodes Island -- 5.2 Converter Controller Development -- 6 Conclusions -- References.
Experiences with System-Level Validation Approach -- 1 Introduction to Users and Experiences -- 2 Application of System-Level Validation Approach in Projects -- 3 Evaluation of Representative Test Cases -- 4 Evaluation of the Holistic Test Description Methodology -- 4.1 Results of Work with ERIGrid Services Questionnaire -- 4.2 Results of Data Specification Questionnaire -- 5 Advantages and Shortcomings of Holistic Validation Methodology -- 5.1 Advantages of the Holistic Validation Methodology -- 5.2 Shortcomings of the Holistic Validation Methodology -- 6 Conclusion -- References -- Education and Training Needs, Methods, and Tools -- 1 Introduction -- 2 Learning Needs for Modern Power and Energy Education -- 3 Laboratory Education -- 3.1 Real-Time Simulation for Laboratory Education -- 3.2 Remote Laboratories -- 4 Simulation-Based Tools -- 4.1 Co-simulation Tools -- 4.2 Interactive (Jupyter) Notebooks -- 5 Outreach Activities -- 5.1 Webinars -- 5.2 Training Schools and Workshops -- 6 Conclusions -- References -- Summary and Outlook -- 1 Conclusions -- 2 Future Work -- References.
isbn 9783030422745
9783030422738
callnumber-first T - Technology
callnumber-subject TK - Electrical and Nuclear Engineering
callnumber-label TK1001-1841
callnumber-sort TK 41001 41841
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6363174
illustrated Not Illustrated
oclc_num 1163828760
work_keys_str_mv AT strasserthomasi europeanguidetopowersystemtestingtheerigridholisticapproachforevaluatingcomplexsmartgridconfigurations
AT dejongerikcw europeanguidetopowersystemtestingtheerigridholisticapproachforevaluatingcomplexsmartgridconfigurations
AT sosninamaria europeanguidetopowersystemtestingtheerigridholisticapproachforevaluatingcomplexsmartgridconfigurations
status_str n
ids_txt_mv (MiAaPQ)5006363174
(Au-PeEL)EBL6363174
(OCoLC)1163828760
carrierType_str_mv cr
is_hierarchy_title European Guide to Power System Testing : The ERIGrid Holistic Approach for Evaluating Complex Smart Grid Configurations.
author2_original_writing_str_mv noLinkedField
noLinkedField
marc_error Info : Unimarc and ISO-8859-1 translations identical, choosing ISO-8859-1. --- [ 856 : z ]
_version_ 1792331056657989632
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06475nam a22004213i 4500</leader><controlfield tag="001">5006363174</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073836.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2020 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030422745</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030422738</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006363174</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6363174</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1163828760</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Strasser, Thomas I.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">European Guide to Power System Testing :</subfield><subfield code="b">The ERIGrid Holistic Approach for Evaluating Complex Smart Grid Configurations.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2020.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">Ã2020.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (141 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Acronyms -- Towards System-Level Validation -- 1 Higher Complexity in Future Power Systems -- 2 Needs for System-Level Validation -- 2.1 Engineering and Validation Process -- 2.2 Towards a System Validation Approach -- 2.3 Illustrative Example -- 3 Existing Approaches and Research Directions -- 3.1 Suitable Methods and Tools -- 3.2 Future Research Directions -- 4 Overview of the ERIGrid Validation Approach -- References -- Test Procedure and Description for System Testing -- 1 Introduction -- 1.1 Testing Procedure and Test Description -- 1.2 Holistic Testing for System Validation -- 2 Toward Procedures for System Validation -- 2.1 Purpose of Testing in the Development Process -- 2.2 The Need for System Testing and Its Support -- 2.3 A Generic Procedure for System Validation -- 2.4 Testing Chain -- 3 ERIGrid Holistic Test Description Methodology -- 3.1 The Requirements and Semantics of Test Description -- 3.2 The ERIGrid Test Description for System Validation -- 3.3 Holistic Test Description: Key Concepts -- 3.4 Remarks on Quantitative Assessment -- 4 Application Examples -- 4.1 Example 1: Testing Chain -- 4.2 Example 2: Coordinated Voltage Control -- 5 Conclusion -- References -- Simulation-Based Assessment Methods -- 1 Introduction to Smart Grid Modelling and Simulation -- 2 Co-simulation Based Assessment -- 2.1 Introduction to Co-simulation, Goals, and Challenges -- 2.2 Current Co-simulation Standards and Their Functionality -- 3 Co-simulation Framework for Smart-Grid Assessment -- 3.1 Co-simulation Interfaces Based on FMI -- 3.2 Mosaik for Scenario Development and Simulation Orchestration -- 4 Scaling Considerations -- 5 Fault Ride-Through of a Wind Park Example -- 5.1 Experiment Setup and Objectives -- 5.2 Results -- 6 Conclusion -- References -- Hardware-in-the-Loop Assessment Methods -- 1 Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2 HIL Techniques for Validation of Smart Grid Solutions -- 2.1 Stability of HIL Experiments -- 2.2 Stability Assessment -- 2.3 Approaches for the Compensation of Time Delay -- 3 Integration of HIL Techniques into a Holistic Framework -- 3.1 Simulation Message-Bus Based Solutions: Lab-Link and OPSIM -- 3.2 Online Integration with SCADA as a Service Approach -- 3.3 Quasi-static PHIL/PSIL -- 4 Coordinated Voltage Control of a Microgrid Example -- 4.1 CHIL Implementation via Lab-Link -- 4.2 Multi-platform CHIL Implementation via OpSim Architecture -- 4.3 PHIL and PSIL Implementation in PRISMES Platform -- 5 Summary -- References -- Laboratory Coupling Approach -- 1 Introduction -- 1.1 State-of-the-Art for Smart Grid Testing -- 1.2 Multi-infrastructure Integration -- 2 JaNDER Communication Platform for Lab-Coupling -- 2.1 Features of the Cloud-Based Communication Platform -- 2.2 Basic Data Sharing via JaNDER-L0 -- 2.3 IEC 61850-Based Communication Platform via JaNDER-L1 -- 2.4 CIM-based Communication Platform via JaNDER-L2 -- 3 Integrated Research Infrastructure -- 3.1 Hardware/Software Integration Between Different Laboratories -- 3.2 Virtual Research Infrastructure -- 4 Examples of Laboratory Couplings -- 4.1 Integration of a Remote OLTC Controller via IEC 61850 -- 4.2 State Estimator Web Service -- 4.3 Geographically Distributed Real-Time Simulation -- 4.4 Real-Time Geographically Distributed CHIL -- 4.5 Real-Time Geographically Distributed PHIL -- 5 Conclusion -- References -- From Scenarios to Use Cases, Test Cases and Validation Examples -- 1 Test Scenario Descriptions -- 2 ERIGrid Generic System Configurations -- 3 Focal Use Cases -- 4 Test Cases -- 5 System Validation Examples -- 5.1 Analysis of the Centralized Voltage Control for Rhodes Island -- 5.2 Converter Controller Development -- 6 Conclusions -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Experiences with System-Level Validation Approach -- 1 Introduction to Users and Experiences -- 2 Application of System-Level Validation Approach in Projects -- 3 Evaluation of Representative Test Cases -- 4 Evaluation of the Holistic Test Description Methodology -- 4.1 Results of Work with ERIGrid Services Questionnaire -- 4.2 Results of Data Specification Questionnaire -- 5 Advantages and Shortcomings of Holistic Validation Methodology -- 5.1 Advantages of the Holistic Validation Methodology -- 5.2 Shortcomings of the Holistic Validation Methodology -- 6 Conclusion -- References -- Education and Training Needs, Methods, and Tools -- 1 Introduction -- 2 Learning Needs for Modern Power and Energy Education -- 3 Laboratory Education -- 3.1 Real-Time Simulation for Laboratory Education -- 3.2 Remote Laboratories -- 4 Simulation-Based Tools -- 4.1 Co-simulation Tools -- 4.2 Interactive (Jupyter) Notebooks -- 5 Outreach Activities -- 5.1 Webinars -- 5.2 Training Schools and Workshops -- 6 Conclusions -- References -- Summary and Outlook -- 1 Conclusions -- 2 Future Work -- References.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Jong, Erik C. W.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sosnina, Maria.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Strasser, Thomas I.</subfield><subfield code="t">European Guide to Power System Testing</subfield><subfield code="d">Cham : Springer International Publishing AG,c2020</subfield><subfield code="z">9783030422738</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6363174</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>