Biotechnologies for Plant Mutation Breeding : : Protocols.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2016.
Ã2017.
Year of Publication:2016
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (343 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Acknowledgements
  • Contents
  • Chapter Reviewers
  • Contributors
  • Part I: Introduction
  • Chapter 1: Mutagenesis for Crop Breeding and Functional Genomics
  • 1.1 Inducing Genetic Variation
  • 1.1.1 Practical Considerations in Induced Crop Mutagenesis
  • 1.1.2 Developing Crop Varieties Using Induced Mutations
  • 1.1.3 Elite Crop Varieties Developed Through Induced Mutations
  • 1.2 Phenotypic Screening
  • 1.2.1 Phenotypic Traits Developed Through Plant Mutation Breeding
  • 1.3 Genotypic Screening of Mutant Plants
  • 1.3.1 Genotypic Methods
  • 1.3.1.1 Lower-Cost Mutation Discovery and Genotyping Methods
  • 1.3.1.2 Higher-Throughput Genotyping and Mutation Discovery Methods
  • 1.3.1.3 Cloning Mutant Alleles Causative for Improved Traits
  • 1.4 Conclusion
  • References
  • Part II: Mutation Induction and Chimera Dissociation
  • Chapter 2: Chemical and Physical Mutagenesis in Jatropha curcas
  • 2.1 Introduction
  • 2.2 Materials
  • 2.2.1 In Vivo Material
  • 2.2.2 In Vitro Material
  • 2.2.3 Mutagenesis by Chemical Agents (See Note 2)
  • 2.2.4 Mutagenesis by Physical Agents
  • 2.3 Methods
  • 2.3.1 In Vivo Material
  • 2.3.2 In Vitro Material
  • 2.3.3 Mutagenesis by Chemical Agents
  • 2.3.3.1 EMS Mutagenesis of In Vivo Material (See Note 10)
  • 2.3.3.2 EMS Mutagenesis of In Vitro Material (See Notes 10 and 20 and Fig. 2.2)
  • 2.3.4 Mutagenesis by Physical Agents
  • 2.3.4.1 Gamma Irradiation of In Vivo Material (See Notes 21-22)
  • 2.3.4.2 Gamma Irradiation of In Vitro Material
  • 2.3.4.3 X-Rays (See Note 32, Fig. 2.4)
  • 2.4 Further Analyses
  • 2.5 Notes
  • References
  • Chapter 3: Chemical Mutagenesis and Chimera Dissolution in Vegetatively Propagated Banana
  • 3.1 Introduction
  • 3.2 Materials
  • 3.2.1 Culture Medium (S-27)
  • 3.2.2 Chemical Toxicity Test
  • 3.2.3 Calculation of Growth Reduction (GR)
  • 3.2.4 Bulk Mutagenesis.
  • 3.2.5 Chimera Dissolution
  • 3.3 Methods
  • 3.3.1 Preparation of Liquid Culture Medium
  • 3.3.2 Preparation of Solid Culture Medium
  • 3.3.3 Chemical Toxicity Test
  • 3.3.4 Calculation of Growth Reduction (GR)
  • 3.3.5 Bulk Mutagenesis
  • 3.3.6 Chimera Dissolution
  • 3.4 Notes
  • References
  • Chapter 4: Mutation Induction Using Gamma Irradiation and Embryogenic Cell Suspensions in Plantain (Musa spp.)
  • 4.1 Introduction
  • 4.1.1 Somatic Embryogenesis in Musa spp.
  • 4.1.2 Mutation Induction in Musa spp.
  • 4.2 Materials
  • 4.2.1 Explant Preparation: Shoot-Tip Establishment and Multiplication
  • 4.2.2 Culture Medium and Incubation Materials
  • 4.2.3 Acclimatization
  • 4.2.4 Mutation Induction Using Gamma Irradiation
  • 4.3 Methods
  • 4.3.1 Explant Preparation: Shoot-Tip Establishment and Multiplication
  • 4.3.1.1 Shoot-Tip Establishment
  • 4.3.1.2 Shoot-Tip Multiplication
  • 4.3.2 Protocol for Plant Regeneration via Somatic Embryogenesis
  • 4.3.2.1 Callus Formation with Embryogenic Structures
  • 4.3.2.2 Establishment and Multiplication of Embryogenic Cell Suspensions
  • 4.3.2.3 Formation of Somatic Embryos
  • 4.3.2.4 Maturation of Somatic Embryos
  • 4.3.2.5 Germination of Somatic Embryos
  • 4.3.2.6 Acclimatization Phase of Somatic Embryos, Conversion into Plants
  • 4.3.3 Mutation Induction Using Gamma Irradiation
  • 4.4 Notes
  • References
  • Chapter 5: Optimisation of Somatic Embryogenesis in Cassava
  • 5.1 Introduction
  • 5.1.1 Production of Cyclic Embryos
  • 5.1.2 Influence of Growth Regulators on Primary Embryo Induction
  • 5.1.3 Somatic Embryo Conversion into Plants
  • 5.2 Materials
  • 5.2.1 Chemicals and Equipment
  • 5.2.2 Culture Media
  • 5.2.3 Shoot Initiation Medium (see Notes 2-4)
  • 5.2.4 Embryo Initiation Medium
  • 5.2.5 Embryo Maturation Medium
  • 5.2.6 Somatic Embryo Conversion Medium
  • 5.3 Methods.
  • 5.3.1 Preparation of Shoot Initiation Medium
  • 5.3.2 Collection and Sterilisation of Donor Plants
  • 5.3.3 Sterilisation and Culture for Shoot Initiation
  • 5.3.4 Culture Incubation
  • 5.3.5 Initiation of Primary Somatic Embryos
  • 5.3.6 Cyclic Embryo Initiation and Production
  • 5.3.7 Abscisic Acid Effect on Conversion of Somatic Embryos into Plant
  • 5.3.8 Desiccation of Embryos for Plant Conversion
  • 5.4 Notes
  • 5.5 Conclusion
  • References
  • Chapter 6: Creation of a TILLING Population in Barley After Chemical Mutagenesis with Sodium Azide and MNU
  • 6.1 Introduction
  • 6.2 Materials
  • 6.2.1 Mutagenesis
  • 6.2.2 Handling of Mutated Population
  • 6.2.3 DNA Isolation
  • 6.2.4 Creation of a Database
  • 6.3 Methods
  • 6.3.1 Mutagenesis
  • 6.3.1.1 General Remarks
  • 6.3.1.2 Mutagenic treatment
  • 6.3.1.3 Evaluation of a Critical Dose of Mutagens
  • 6.3.2 Handling of the Mutated Generations and the Basic Phenotyping of M2 Plants and M3 Lines
  • 6.3.3 DNA Isolation: Creating the M2 DNA Library
  • 6.3.3.1 Isolate DNA from the M2 Plants According to the Modified Micro-CTAB Method (Doyle and Doyle 1987 and see Note 19)
  • 6.3.3.2 Prepare Pools of DNA to Identify Plants Carrying Mutations Within the Gene of Interest
  • 6.3.4 Creation of a Database
  • 6.3.4.1 General Information
  • 6.3.4.2 Creation of a Database: An Example
  • Notes
  • References
  • Chapter 7: Site-Directed Mutagenesis in Barley by Expression of TALE Nuclease in Embryogenic Pollen
  • 7.1 Introduction
  • 7.1.1 Site-Directed Mutagenesis in Plants
  • 7.1.2 Haploid Technology
  • 7.2 Materials
  • 7.2.1 Donor Plants
  • 7.2.2 Stock Solutions and Culture Media
  • 7.2.2.1 Stock Solutions
  • 7.2.2.2 Medium for Agrobacterium Tumefaciens
  • 7.2.2.3 Media for Plant Cell Culture
  • 7.2.3 Materials for the Isolation of Embryogenic Pollen
  • 7.2.4 Materials for Agrobacterium-Mediated Transformation.
  • 7.2.5 Materials for the Analysis of Transgenic Plants
  • 7.2.5.1 Ploidy Determination and Colchicine-Induced Whole Genome Duplication
  • 7.2.5.2 Molecular Analyses
  • DNA Isolation, PCR, and DNA Gel Blot Analysis
  • RNA Isolation and Reverse Transcriptase Reaction
  • 7.3 Methods
  • 7.3.1 Vector Construction and Bacterial Strains
  • 7.3.2 Growth of Donor Plants
  • 7.3.3 Isolation of Immature Pollen
  • 7.3.3.1 Spike Pretreatment
  • 7.3.3.2 Isolation, Purification, and Pre-cultivation of Immature Pollen
  • 7.3.4 Agrobacterium-Mediated Gene Transfer to Embryogenic Pollen
  • 7.3.4.1 Preparation of A. tumefaciens Stocks
  • 7.3.4.2 Cocultivation of Embryogenic Pollen Cultures and A. tumefaciens
  • 7.3.5 Regeneration of Transgenics
  • 7.3.6 Analysis of Putative Transgenic Plants
  • 7.3.6.1 Ploidy Determination and Colchicine-Induced Whole Genome Duplication
  • 7.3.6.2 Molecular Analyses
  • DNA Isolation, PCR, and DNA Gel Blot Analysis
  • RNA Isolation and Reverse Transcriptase Reaction
  • 7.4 Notes
  • References
  • Chapter 8: Doubled Haploidy as a Tool for Chimaera Dissolution of TALEN-Induced Mutations in Barley
  • 8.1 Introduction
  • 8.1.1 Generation of Primary Mutants by Cross-Combination of Parental Lines Carrying Complementary Single TALEN Units
  • 8.1.2 Chimaerism Upon TALEN-Induced Targeted Mutagenesis
  • 8.1.3 Haploid Technology
  • 8.2 Materials
  • 8.2.1 Growth of Parental Lines and Primary Mutant Plants
  • 8.2.2 Stock Solutions and Culture Media
  • 8.2.2.1 Solutions for Isolation, Purification and Induction of Embryogenic Development of Immature Pollen
  • 8.2.2.2 Nutrient Media for Embryogenic Pollen Culture and Plant Regeneration
  • 8.2.3 Materials for the Isolation of Embryogenic Pollen Culture and Plant Regeneration
  • 8.2.4 Materials for the Molecular Analyses of Pollen-Derived Plants.
  • 8.2.5 Materials for Ploidy Determination and Colchicine-Induced Whole-Genome Duplication
  • 8.3 Methods
  • 8.3.1 Growth of Primary Mutant Plants
  • 8.3.2 Crossing of Pairs of Complementary Single TALEN Plants and Analysis of Hybrid Plants
  • 8.3.3 Spike Preparation
  • 8.3.4 Isolation, Purification and Inductive Treatment of Immature Pollen
  • 8.3.5 Regeneration of Pollen-Derived Plants
  • 8.3.6 Analysis of Pollen-Derived Plants
  • 8.3.6.1 Ploidy Determination
  • 8.3.6.2 DNA Isolation, PCR and Sequencing
  • 8.3.6.3 Mutant Comparison
  • 8.4 Notes
  • References
  • Part III: Phenotypic Screening
  • Chapter 9: Field Evaluation of Mutagenized Rice Material
  • 9.1 Introduction
  • 9.2 Materials
  • 9.2.1 Plot Design
  • 9.2.2 Field Preparation and Planting
  • 9.2.3 Rice Culture
  • 9.2.4 Field Observations and Trait Evaluation
  • 9.3 Methods
  • 9.3.1 Plot Design
  • 9.3.2 Field Preparation and Planting
  • 9.3.3 Rice Culture
  • 9.3.4 Field Observations and Trait Evaluation
  • 9.4 Notes
  • References
  • Chapter 10: Root Phenotyping Pipeline for Cereal Plants
  • 10.1 Introduction
  • 10.1.1 Issue of Root Phenotyping
  • 10.1.2 Root Phenotyping of Cereal Plants
  • 10.1.3 Proposed Root Phenotyping Pipeline
  • 10.2 Materials
  • 10.2.1 Design of a Plant Growth System
  • 10.2.2 Root Scanning Setup
  • 10.3 Methods
  • 10.3.1 Preparation of Culture Media
  • 10.3.2 Controlling the System and Monitoring the Medium Parameters
  • 10.3.3 Experiment Preparation and Maintenance
  • 10.3.4 Medium Exchange
  • 10.3.5 Experiment Termination and Root System Cleaning
  • 10.3.6 Root System Analysis Using WinRHIZO System
  • 10.3.7 Root Image Analysis
  • 10.4 Notes
  • References
  • Chapter 11: Breeding New Aromatic Rice with High Iron Using Gamma Radiation and Hybridization
  • 11.1 Introduction
  • 11.2 Materials
  • 11.3 Methods
  • 11.3.1 Preparing a Mutant Population.
  • 11.3.2 Phenotypic Analysis of Aroma.