Optics in Our Time.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2016.
©2016.
Year of Publication:2016
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (509 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Foreword
  • Preface
  • Contents
  • About the Editors and Authors
  • I History
  • 1: A Very Brief History of Light
  • 1.1 Introduction
  • 1.2 Greeks and Antiquity
  • 1.3 Islamic Period
  • 1.4 Scientific Revolution
  • 1.5 Light in Twentieth Century
  • 1.6 Epilogue
  • Bibliography
  • 2: Ibn al-Haythamś Scientific Research Programme
  • 2.1 Introduction
  • 2.2 Between Ptolemy and Kepler: Ibn al-Haythamś Celestial Kinematics
  • 2.3 Ibn al-Haythamś Reform of Optics
  • 2.4 Conclusion
  • References
  • II Ultrafast Phenomena and the Invisible World
  • 3: Ultrafast Light and Electrons: Imaging the Invisible
  • 3.1 Origins
  • 3.2 Optical Microscopy and the Phenomenon of Interference
  • 3.3 The Temporal Resolution: From Visible to Invisible Objects
  • 3.4 Electron Microscopy: Time-Averaged Imaging
  • 3.5 2D Imaging and Visualization of Atoms
  • 3.6 The Third Dimension and Biological Imaging
  • 3.7 4D Ultrafast Electron Microscopy
  • 3.8 Coherent Single-Electrons in Ultrafast Electron Microscopy
  • 3.9 Visualization and Complexity
  • 3.10 Attosecond Pulse Generation
  • 3.11 Optical Gating of Electrons and Attosecond Electron Microscopy
  • 3.12 Conclusion
  • References
  • III Optical Sources
  • 4: The Laser
  • 4.1 Introduction: A Laser in the Hands of Ibn al-Haytham
  • 4.2 The Laser: An Optical Oscillator
  • 4.2.1 Oscillators
  • 4.2.2 The Optical Oscillator
  • 4.2.3 Optical Amplification by Stimulated Emission
  • 4.2.4 Laser Materials and Pumping Methods
  • 4.3 Optical Resonators and Their Modes
  • 4.3.1 Modes
  • 4.3.2 The Gaussian Beam
  • 4.4 Coherence of Laser Light
  • 4.5 Pulsed Lasers
  • 4.6 Conclusion
  • Further Reading
  • 5: Solid-State Lighting Based on Light Emitting Diode Technology
  • 5.1 Historical Development of LEDs
  • 5.2 The Importance of Nitride Materials
  • 5.3 LED Basics
  • 5.4 Fabrication of an LED Luminaire.
  • 5.4.1 Efficiency and Efficacy
  • 5.5 Research Challenges
  • 5.5.1 Crystal Growth
  • 5.5.2 Internal Electric Field
  • 5.5.3 p-Type Doping
  • 5.5.4 Green Gap and Efficiency Droop
  • 5.5.5 Chip Design
  • 5.5.6 Generation of White Light with LEDs
  • 5.5.7 LED Packaging
  • 5.6 LEDs for Lighting
  • 5.6.1 Quality of LED Lighting
  • 5.6.2 Efficacy
  • 5.6.3 Lifetime
  • 5.6.4 Cost
  • 5.7 LED Lighting Applications: The Present and Future
  • 5.7.1 General Illumination and Energy Saving
  • 5.7.2 Circadian Rhythm Lighting
  • 5.8 Chapter Summary
  • References
  • 6: Modern Electron Optics and the Search for More Light: The Legacy of the Muslim Golden Age
  • 6.1 Introduction
  • 6.2 Electron Optics
  • 6.3 Parallels with Optical Microscopy
  • 6.4 JJ Thomson and His Discovery, the Electron
  • 6.5 The Principle of Electron-Solid Interaction
  • 6.6 The Basic Components of Electron Microscopes
  • 6.6.1 The Electron Source
  • 6.6.2 The Probe-Forming Column (Electron Lenses)
  • The Specimen Chamber
  • 6.6.3 The Detectors
  • 6.7 Fourth-Dimension Electron Microscopy or Time-Resolved Electron Microscopy
  • 6.8 Lensless Electron Microscopy
  • 6.9 Application of Electron Microscopy Towards Light-Producing Devices
  • 6.10 Conclusions
  • References
  • IV Applications
  • 7: The Dawn of Quantum Biophotonics
  • 7.1 Overview: Toward Quantum Agri-Biophotonics
  • 7.2 Fundamental Light-Matter Interactions and Spectroscopy of Biological Systems
  • 7.3 Quantum-Enhanced Remote Sensing
  • 7.3.1 Anthrax Detection in Real Time
  • 7.3.2 Stand-Off Spectroscopy
  • 7.3.3 Detection of Plant Stress Using Laser-Induced Breakdown Spectroscopy
  • 7.3.4 Stand-off Detection Using Laser Filaments
  • 7.4 Quantum Heat Engines
  • 7.4.1 The Laser and the Photovoltaic Cell as a Quantum Heat Engine
  • 7.4.2 The Photo-Carnot Quantum Heat Engine
  • 7.4.3 Biological Quantum Heat Engines.
  • 7.5 Emerging Techniques with Single Molecule Sensitivity
  • 7.5.1 Coherent Surface-Enhanced Raman Spectroscopy
  • 7.5.2 Cavity Ring-Down Spectroscopy
  • 7.6 Superresolution Quantum Microscopy
  • 7.6.1 Subwavelength Quantum Microscopy
  • 7.6.2 Tip-Enhanced Quantum Bioimaging
  • 7.7 Novel Light Sources
  • 7.7.1 Fiber Sensors
  • 7.7.2 Quantum Coherence in X-Ray Laser Generation
  • 7.7.3 Coherent Control of Gamma Rays
  • 7.8 Conclusion
  • References
  • 8: Optical Communication: Its History and Recent Progress
  • 8.1 Historical Perspective
  • 8.2 Basic Concepts Behind Optical Communication
  • 8.2.1 Optical Transmitters and Receivers
  • 8.2.2 Optical Fibers and Cables
  • 8.2.3 Modulations Formats
  • 8.2.4 Channel Multiplexing
  • 8.3 Evolution of Optical Communication from 1975 to 2000
  • 8.3.1 The First Three Generations
  • 8.3.2 The Fourth Generation
  • 8.3.3 Bursting of the Telecom Bubble in 2000
  • 8.4 The Fifth Generation
  • 8.5 The Sixth Generation
  • 8.5.1 Capacity Limit of Single-Mode Fibers
  • 8.5.2 Space-Division Multiplexing
  • 8.6 Worldwide Fiber-Optic Communication Network
  • 8.7 Conclusions
  • References
  • 9: Optics in Remote Sensing
  • 9.1 Introduction
  • 9.2 Historical Overview
  • 9.2.1 Speed of Light
  • 9.2.2 Fraunhofer and the Invention of Remote Sensing
  • 9.2.3 Passive Remote Sensing
  • 9.3 The Development of the Laser for Active Remote Sensing
  • 9.4 LIDAR
  • 9.4.1 The Precision Measurement of Distances
  • 9.4.2 Measuring the Speed of an Object at a Distance Point
  • 9.4.3 Measuring Sound Speed as a Function of Depth in the Ocean
  • 9.4.4 Measuring Temperature as a Function of Depth in the Ocean
  • 9.4.5 Detecting and Identifying Underwater Objects (Fish, Mines, etc.)
  • 9.4.6 Trace Gas Detection
  • 9.4.7 Femtosecond-Lidar Application for Influencing Weather Phenomena
  • 9.4.8 Stand-Off Super-Radiant Spectroscopy
  • 9.5 Conclusions.
  • References
  • 10: Optics in Nanotechnology
  • 10.1 Introduction
  • 10.2 Optics in Nanometals: Nature of Interaction of Light with Metal
  • 10.2.1 Plasma Model
  • 10.2.2 Miniaturized Metal: Subwavelength Concentration of Light
  • Bulk Material (3D)
  • Thin Film or Sheet (2D)
  • Nanowire (1D)
  • Nanoparticles/Dot (0D)
  • 10.2.3 Miniaturization-Induced Coloration of Metals
  • 10.2.4 Plasmonic Lenses
  • Confinement-Based Lensing
  • Transmission-Based Lensing
  • 10.2.5 Metamaterials: Negative Refractive Index
  • 10.2.6 Heat Loss: Are Plasmonic-Based Devices Practical?
  • 10.3 Optics in Nanosemiconductors
  • 10.3.1 Bandgap and Excitons
  • 10.3.2 Direct and Indirect Bandgap Materials
  • 10.3.3 Enhancing and Blue Shifting of Luminescence by Quantum Confinement
  • 10.3.4 Making Silicon Glow: Quantum Confinement
  • 10.3.5 Optical Nonlinearity in Nanosilicon
  • 10.3.6 Optical Gain in Nanosilicon-Based Material
  • 10.4 Applications of Optics in Nanotechnology
  • 10.4.1 Integration of Optics and Electronics
  • 10.4.2 Confined Light in Service of Substance Detection
  • 10.4.3 Nanofabrication and Nanolithography
  • 10.4.4 Photovoltaics and Photocurrent
  • 10.4.5 Solid State LED White Lighting
  • 10.4.6 Plasmonic Hyperthermic-Based Treatment and Monitoring of Acute Disease
  • 10.5 Plasmon Effect in Ancient Technology and Art
  • 10.6 Alhasan Ibn Alhaytham (Alhazen) and the Nature of Light and Lusterware
  • 10.7 From Alhazen to Newton to the Trio: Dispersion of Light
  • 10.8 Conclusion
  • References
  • 11: Optics and Renaissance Art
  • 11.1 Introduction
  • 11.2 Analysis of Paintings
  • 11.2.1 Jan van Eyck, The Arnolfini Marriage, 1434
  • 11.2.2 Lorenzo Lotto, Husband and Wife, 1523-1524
  • 11.2.3 Hans Holbein the Younger, The French Ambassadors to the English Court, 1532
  • 11.2.4 Robert Campin, The Annunciation Triptych (Merode Altarpiece), c1425-c1430.
  • 11.3 Conclusions
  • 11.4 Acknowledgments
  • References
  • 12: The Eye as an Optical Instrument
  • 12.1 Introduction
  • 12.2 The Anatomy of the Eye
  • 12.3 The Quality of the Retinal Image
  • 12.4 Peripheral Optics
  • 12.5 Conclusions
  • References
  • 13: Optics in Medicine
  • 13.1 Introduction
  • 13.1.1 Why Optics in Medicine?
  • 13.1.2 Global Healthcare Needs and Drivers
  • 13.1.3 Historical Uses of Optics in Medicine
  • 13.1.4 Future Trends
  • 13.2 Early and Traditional Medical Optical Instruments
  • 13.2.1 Head Mirror
  • 13.2.2 Otoscope
  • 13.2.2.1 History of the Otoscope
  • 13.2.3 Ophthalmoscope
  • 13.2.4 Retinoscope
  • 13.2.5 Phoropter
  • 13.2.6 Laryngoscope
  • 13.3 Fiber Optic Medical Devices and Applications
  • 13.3.1 Optical Fiber Fundamentals
  • 13.3.2 Coherent and Incoherent Optical Fiber Bundles
  • 13.3.3 Illuminating Guides
  • 13.3.4 Fiberscopes and Endoscopes
  • 13.3.5 Fused Fiber Faceplates and Tapers for Digital X-rays
  • 13.4 Conclusions
  • References
  • V Quantum Optics
  • 14: Atom Optics in a Nutshell
  • 14.1 Introduction
  • 14.2 Particles or Waves?
  • 14.2.1 Light
  • 14.2.2 Atoms
  • 14.2.3 Particles and Waves
  • 14.2.4 Atoms as Waves
  • 14.2.5 Cold Atoms and Molecules
  • 14.3 Atomic Microscope
  • 14.4 Interferences
  • 14.4.1 Atom Interferences
  • 14.4.2 Atom Interferometry
  • 14.4.3 Fundamental Studies
  • 14.4.4 BEC Atom Interferometers
  • 14.5 Outlook
  • References
  • 15: Slow, Stored and Stationary Light
  • 15.1 Introduction
  • 15.2 Slow Light, Stopped Light and Stationary Light: A Simple Picture
  • 15.3 A Microscopic Picture of Light Propagation in a Medium
  • 15.3.1 Absorption, Emission and Refraction
  • 15.3.2 Group Velocity
  • 15.4 Electromagnetically Induced Transparency
  • 15.5 Slow Light, Stored Light and Dark-State Polaritons
  • 15.5.1 Slow Light
  • 15.5.2 Stopped Light and Quantum Memories for Photons.
  • 15.5.3 Slow-Light Polaritons.