Particle Physics Reference Library : : Volume 3: Accelerators and Colliders.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2020.
©2020.
Year of Publication:2020
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (867 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5006210990
ctrlnum (MiAaPQ)5006210990
(Au-PeEL)EBL6210990
(OCoLC)1158221836
collection bib_alma
record_format marc
spelling Myers, Stephen.
Particle Physics Reference Library : Volume 3: Accelerators and Colliders.
1st ed.
Cham : Springer International Publishing AG, 2020.
©2020.
1 online resource (867 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Preface -- Contents -- About the Editors -- 1 Accelerators, Colliders and Their Application -- 1.1 Why Build Accelerators? -- 1.2 Types and Evolution of Accelerators -- 1.2.1 Early Accelerators -- 1.2.2 The Ray Transformer -- 1.2.3 Repetitive Acceleration -- 1.2.4 Linear Accelerators -- 1.2.5 Cyclotrons -- 1.2.6 The Synchrotron -- 1.2.7 Phase Stability -- References -- 2 Beam Dynamics -- 2.1 Linear Transverse Beam Dynamics -- 2.1.1 Co-ordinate System -- 2.1.2 Displacement and Divergence -- 2.1.3 Bending Magnets and Magnetic Rigidity -- 2.1.4 Particle Trajectory in a Dipole Bending Magnet -- 2.1.5 Weak Focusing -- 2.1.6 Alternating Gradient Focusing -- 2.1.7 Quadrupole Magnets -- 2.1.8 The Equation of Motion -- 2.1.9 Matrix Description -- 2.1.10 Transport Matrices for Lattice Components -- 2.1.11 The Betatron Envelopes -- 2.2 Coupling -- 2.2.1 Coupling Fields -- 2.2.2 Qualitative Treatment of Coupling -- 2.3 Liouville's Theorem -- 2.3.1 Chains of Accelerators -- 2.3.2 Exceptions to Liouville's Theorem -- 2.4 Momentum Dependent Transverse Motion -- 2.4.1 Dispersion -- 2.4.2 Chromaticity -- 2.5 Longitudinal Motion -- 2.5.1 Stability of the Lagging Particle -- 2.5.2 Transition Energy -- 2.5.3 Synchrotron Motion -- 2.5.4 Stationary Buckets -- References -- 3 Non-linear Dynamics in Accelerators -- 3.1 Introduction -- 3.1.1 Motivation -- 3.1.2 Single Particle Dynamics -- 3.1.3 Layout of the Treatment -- 3.2 Variables -- 3.2.1 Trace Space and Phase Space -- 3.2.2 Curved Coordinate System -- 3.3 Sources of Non-linearities -- 3.3.1 Non-linear Machine Elements -- 3.3.1.1 Unwanted Non-linear Machine Elements -- 3.3.1.2 Wanted Non-linear Machine Elements -- 3.3.2 Beam-Beam Effects and Space Charge -- 3.4 Map Based Techniques -- 3.5 Linear Normal Forms -- 3.5.1 Sequence of Maps -- 3.5.2 Analysis of the One Turn Map -- 3.5.3 Action-Angle Variables.
3.5.4 Beam Emittance -- 3.6 Techniques and Tools to Evaluate and Correct Non-linear Effects -- 3.6.1 Particle Tracking -- 3.6.1.1 Symplecticity -- 3.6.2 Approximations and Tools -- 3.6.3 Taylor and Power Maps -- 3.6.3.1 Taylor Maps -- 3.6.3.2 Thick and Thin Lenses -- 3.6.3.3 Symplectic Matrices and Symplectic Integration -- 3.6.3.4 Comparison Symplectic Versus Non-symplectic Integration -- 3.7 Hamiltonian Treatment of Electro-Magnetic Fields -- 3.7.1 Lagrangian of Electro-Magnetic Fields -- 3.7.1.1 Lagrangian and Hamiltonian -- 3.7.2 Hamiltonian with Electro-Magnetic Fields -- 3.7.3 Hamiltonian Used for Accelerator Physics -- 3.7.3.1 Lie Maps and Transformations -- 3.7.3.2 Concatenation of Lie Transformations -- 3.7.4 Analysis Techniques: Poincare Surface of Section -- 3.7.5 Analysis Techniques: Normal Forms -- 3.7.5.1 Normal Form Transformation: Linear Case -- 3.7.5.2 Normal Form Transformation: Non-linear Case -- 3.7.6 Truncated Power Series Algebra Based on Automatic Differentiation -- 3.7.6.1 Automatic Differentiation: Concept -- 3.7.6.2 Automatic Differentiation: The Algebra -- 3.7.6.3 Automatic Differentiation: The Application -- 3.7.6.4 Automatic Differentiation: Higher Orders -- 3.7.6.5 Automatic Differentiation: More Variables -- 3.7.6.6 Differential Algebra: Applications to Accelerators -- 3.7.6.7 Differential Algebra: Simple Example -- 3.8 Beam Dynamics with Non-linearities -- 3.8.1 Amplitude Detuning -- 3.8.1.1 Amplitude Detuning due to Non-linearities in Machine Elements -- 3.8.1.2 Amplitude Detuning due to Beam-Beam Effects -- 3.8.1.3 Phase Space Structure -- 3.8.2 Non-linear Resonances -- 3.8.2.1 Resonance Condition in One Dimension -- 3.8.2.2 Driving Terms -- 3.8.3 Chromaticity and Chromaticity Correction -- 3.8.4 Dynamic Aperture -- 3.8.4.1 Long Term Stability and Chaotic Behaviour -- 3.8.4.2 Practical Implications -- References.
4 Impedance and Collective Effects -- 4.1 Space Charge -- 4.1.1 Direct Space Charge -- 4.1.2 Indirect Space Charge -- 4.2 Wake Fields and Impedances -- 4.3 Coherent Instabilities -- 4.3.1 Longitudinal -- 4.3.2 Transverse -- 4.4 Landau Damping -- 4.4.1 Transverse -- 4.4.2 Longitudinal -- 4.5 Two-Stream Effects (Electron Cloud and Ions) -- 4.5.1 Electron Cloud Build-Up in Positron/Hadron Machines -- 4.5.2 The Electron Cloud Instability -- 4.5.3 Mitigation and Suppression -- 4.6 Beam-Beam Effects -- 4.6.1 Introduction -- 4.6.2 Beam-Beam Force -- 4.6.2.1 Elliptical Beams -- 4.6.2.2 Round Beams -- 4.6.3 Incoherent Effects: Single Particle Effects -- 4.6.3.1 Beam-Beam Parameter -- 4.6.3.2 Non-linear Effects -- 4.6.3.3 Beam Stability -- 4.6.3.4 Beam-Beam Limit -- 4.6.4 Studies of Head-on Collisions at the LHC -- 4.6.4.1 PACMAN Bunches -- 4.6.5 Head-on Beam-Beam Tune Shift -- 4.6.6 Effect of Number of Head-on Collisions -- 4.6.7 Crossing Angle and Long Range Interactions -- 4.6.7.1 Long-Range Beam-Beam Effects -- 4.6.7.2 Opposite Sign Tune Shift -- 4.6.7.3 Strength of Long-Range Interactions -- 4.6.7.4 Footprint for Long-Range Interactions -- 4.6.8 Studies of Long Range Interactions in the LHC -- 4.6.8.1 Dynamic Aperture Reduction Due to Long-Range Interactions -- 4.6.8.2 Beam-Beam Induced Orbit Effects -- 4.6.9 Coherent Beam-Beam Effects -- 4.6.9.1 Coherent Beam-Beam Modes -- 4.6.10 Compensation of Beam-Beam Effects -- 4.6.10.1 Electron Lenses -- 4.6.10.2 Electrostatic Wire -- 4.6.10.3 Möbius Scheme -- 4.7 Numerical Modelling -- 4.7.1 The Electromagnetic Problem -- 4.7.2 Beam Dynamics -- References -- 5 Interactions of Beams with Surroundings -- 5.1 The Interactions of High Energy Particles with Matter -- 5.1.1 Basic Physical Processes in Radiation Transport Through Matter -- 5.1.2 Simulation Tools -- 5.1.2.1 FLUKA -- 5.1.2.2 GEANT4 -- 5.1.2.3 MARS15.
5.1.2.4 MCNP -- 5.1.2.5 PHITS -- 5.1.2.6 Simulation Uncertainties -- 5.1.3 Practical Shielding Considerations -- 5.1.3.1 Radiation Attenuation -- 5.1.3.2 Shielding of Electromagnetic Showers -- 5.1.3.3 Shielding of Neutrons -- 5.2 Lifetimes, Intensity and Luminosity -- 5.2.1 Beam-Gas -- 5.2.2 Thermal Photons -- 5.2.3 Luminosity Lifetime -- 5.3 Experimental Conditions -- 5.3.1 Sources of Detector Background and Detector Performance -- 5.3.2 Synchrotron Radiation Background -- References -- 6 Design and Principles of Synchrotrons and Circular Colliders -- 6.1 Beam Optics and Lattice Design in High Energy Particle Accelerators -- 6.1.1 Geometry of the Ring -- 6.1.2 Lattice Design -- 6.2 Lattice Insertions -- 6.2.1 Low Beta Insertions -- 6.2.2 Injection and Extraction Insertions -- 6.2.3 Dispersion Suppressors -- 6.2.3.1 The "Straightforward" Way: Dispersion Suppression Using Quadrupole Magnets -- 6.2.3.2 The "Clever" Way: Half Bend Schemes -- 6.2.3.3 The "Missing Bend" Dispersion Suppressor Scheme -- 6.3 Injection and Extraction Techniques -- 6.3.1 Fast Injection -- 6.3.2 Slip-Stacking Injection -- 6.3.3 H− Charge-Exchange Injection -- 6.3.4 Lepton Accumulation Injection -- 6.3.5 Fast Extraction -- 6.3.6 Resonant Extraction -- 6.3.7 Continuous Transfer Extraction -- 6.3.8 Resonant Continuous Transfer Extraction -- 6.3.9 Other Injection and Extraction Techniques -- 6.4 Concept of Luminosity -- 6.4.1 Introduction -- 6.4.2 Computation of Luminosity -- 6.4.3 Luminosity with Correction Factors -- 6.4.3.1 Effect of Crossing Angle and Transverse Offset -- 6.4.3.2 Hour Glass Effect -- 6.4.3.3 Crabbed Waist Scheme -- 6.4.4 Integrated Luminosity and Event Pile Up -- 6.4.5 Measurement and Calibration of Luminosity -- 6.4.6 Absolute Luminosity: Lepton Colliders -- 6.4.7 Absolute Luminosity: Hadron Colliders.
6.4.7.1 Measurement by Profile Monitors and Beam Displacement -- 6.4.7.2 Absolute Measurement with Optical Theorem -- 6.4.8 Luminosity in Linear Colliders -- 6.4.8.1 Disruption and Luminosity Enhancement Factor -- 6.4.8.2 Beamstrahlung -- 6.5 Synchrotron Radiation and Damping -- 6.5.1 Basic Properties of Synchrotron Radiation -- 6.5.2 Radiation Damping -- 6.6 Computer Codes for Beam Dynamics -- 6.6.1 Introduction -- 6.6.2 Classes of Beam Dynamics Codes -- 6.6.3 Optics Codes -- 6.6.4 Single Particle Tracking Codes -- 6.6.4.1 Techniques -- 6.6.4.2 Analysis of Tracking Data -- 6.6.5 Multi Particle Tracking Codes -- 6.6.6 Machine Protection -- 6.7 Electron-Positron Circular Colliders -- 6.7.1 Physics of Electron-Positron Rings -- 6.7.2 Design of Colliders -- 6.7.3 Large Piwinski Angle and Crab Waist Collision Scheme -- 6.8 Hadron Colliders and Electron-Proton Colliders -- 6.8.1 Principles of Hadron Colliders -- 6.8.2 Proton-Antiproton Colliders -- 6.8.3 Proton-Proton Colliders -- 6.8.4 Electron-Proton Colliders -- 6.9 Ion Colliders -- 6.10 Beam Cooling -- 6.10.1 Introduction -- 6.10.2 Beam Cooling Techniques -- 6.10.2.1 Radiation Cooling -- 6.10.2.2 Microwave Stochastic Cooling -- 6.10.2.3 Electron Cooling -- 6.10.2.4 Laser Cooling -- 6.10.2.5 Ionisation Cooling -- 6.10.2.6 Cooling of Particles in Traps -- References -- 7 Design and Principles of Linear Accelerators and Colliders -- 7.1 General Introduction on Linear Accelerators -- 7.2 High Luminosity Issues and Beam-Beam Effects -- 7.3 CLIC &amp -- ILC -- 7.3.1 Introduction -- 7.3.2 ILC Design -- 7.3.3 CLIC Design -- 7.3.4 On-Going or Recent R&amp -- D -- 7.3.4.1 ILC Specific -- 7.3.4.2 CLIC Specific -- 7.3.5 Common Issues and Prospects -- 7.4 Accelerating Structures Design and Efficiency -- 7.4.1 Normal Conducting Accelerating Structures -- 7.4.2 Superconducting Accelerating Structures.
7.5 Wakefields and Emittance Preservation.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Schopper, Herwig.
Print version: Myers, Stephen Particle Physics Reference Library Cham : Springer International Publishing AG,c2020 9783030342449
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6210990 Click to View
language English
format eBook
author Myers, Stephen.
spellingShingle Myers, Stephen.
Particle Physics Reference Library : Volume 3: Accelerators and Colliders.
Intro -- Preface -- Contents -- About the Editors -- 1 Accelerators, Colliders and Their Application -- 1.1 Why Build Accelerators? -- 1.2 Types and Evolution of Accelerators -- 1.2.1 Early Accelerators -- 1.2.2 The Ray Transformer -- 1.2.3 Repetitive Acceleration -- 1.2.4 Linear Accelerators -- 1.2.5 Cyclotrons -- 1.2.6 The Synchrotron -- 1.2.7 Phase Stability -- References -- 2 Beam Dynamics -- 2.1 Linear Transverse Beam Dynamics -- 2.1.1 Co-ordinate System -- 2.1.2 Displacement and Divergence -- 2.1.3 Bending Magnets and Magnetic Rigidity -- 2.1.4 Particle Trajectory in a Dipole Bending Magnet -- 2.1.5 Weak Focusing -- 2.1.6 Alternating Gradient Focusing -- 2.1.7 Quadrupole Magnets -- 2.1.8 The Equation of Motion -- 2.1.9 Matrix Description -- 2.1.10 Transport Matrices for Lattice Components -- 2.1.11 The Betatron Envelopes -- 2.2 Coupling -- 2.2.1 Coupling Fields -- 2.2.2 Qualitative Treatment of Coupling -- 2.3 Liouville's Theorem -- 2.3.1 Chains of Accelerators -- 2.3.2 Exceptions to Liouville's Theorem -- 2.4 Momentum Dependent Transverse Motion -- 2.4.1 Dispersion -- 2.4.2 Chromaticity -- 2.5 Longitudinal Motion -- 2.5.1 Stability of the Lagging Particle -- 2.5.2 Transition Energy -- 2.5.3 Synchrotron Motion -- 2.5.4 Stationary Buckets -- References -- 3 Non-linear Dynamics in Accelerators -- 3.1 Introduction -- 3.1.1 Motivation -- 3.1.2 Single Particle Dynamics -- 3.1.3 Layout of the Treatment -- 3.2 Variables -- 3.2.1 Trace Space and Phase Space -- 3.2.2 Curved Coordinate System -- 3.3 Sources of Non-linearities -- 3.3.1 Non-linear Machine Elements -- 3.3.1.1 Unwanted Non-linear Machine Elements -- 3.3.1.2 Wanted Non-linear Machine Elements -- 3.3.2 Beam-Beam Effects and Space Charge -- 3.4 Map Based Techniques -- 3.5 Linear Normal Forms -- 3.5.1 Sequence of Maps -- 3.5.2 Analysis of the One Turn Map -- 3.5.3 Action-Angle Variables.
3.5.4 Beam Emittance -- 3.6 Techniques and Tools to Evaluate and Correct Non-linear Effects -- 3.6.1 Particle Tracking -- 3.6.1.1 Symplecticity -- 3.6.2 Approximations and Tools -- 3.6.3 Taylor and Power Maps -- 3.6.3.1 Taylor Maps -- 3.6.3.2 Thick and Thin Lenses -- 3.6.3.3 Symplectic Matrices and Symplectic Integration -- 3.6.3.4 Comparison Symplectic Versus Non-symplectic Integration -- 3.7 Hamiltonian Treatment of Electro-Magnetic Fields -- 3.7.1 Lagrangian of Electro-Magnetic Fields -- 3.7.1.1 Lagrangian and Hamiltonian -- 3.7.2 Hamiltonian with Electro-Magnetic Fields -- 3.7.3 Hamiltonian Used for Accelerator Physics -- 3.7.3.1 Lie Maps and Transformations -- 3.7.3.2 Concatenation of Lie Transformations -- 3.7.4 Analysis Techniques: Poincare Surface of Section -- 3.7.5 Analysis Techniques: Normal Forms -- 3.7.5.1 Normal Form Transformation: Linear Case -- 3.7.5.2 Normal Form Transformation: Non-linear Case -- 3.7.6 Truncated Power Series Algebra Based on Automatic Differentiation -- 3.7.6.1 Automatic Differentiation: Concept -- 3.7.6.2 Automatic Differentiation: The Algebra -- 3.7.6.3 Automatic Differentiation: The Application -- 3.7.6.4 Automatic Differentiation: Higher Orders -- 3.7.6.5 Automatic Differentiation: More Variables -- 3.7.6.6 Differential Algebra: Applications to Accelerators -- 3.7.6.7 Differential Algebra: Simple Example -- 3.8 Beam Dynamics with Non-linearities -- 3.8.1 Amplitude Detuning -- 3.8.1.1 Amplitude Detuning due to Non-linearities in Machine Elements -- 3.8.1.2 Amplitude Detuning due to Beam-Beam Effects -- 3.8.1.3 Phase Space Structure -- 3.8.2 Non-linear Resonances -- 3.8.2.1 Resonance Condition in One Dimension -- 3.8.2.2 Driving Terms -- 3.8.3 Chromaticity and Chromaticity Correction -- 3.8.4 Dynamic Aperture -- 3.8.4.1 Long Term Stability and Chaotic Behaviour -- 3.8.4.2 Practical Implications -- References.
4 Impedance and Collective Effects -- 4.1 Space Charge -- 4.1.1 Direct Space Charge -- 4.1.2 Indirect Space Charge -- 4.2 Wake Fields and Impedances -- 4.3 Coherent Instabilities -- 4.3.1 Longitudinal -- 4.3.2 Transverse -- 4.4 Landau Damping -- 4.4.1 Transverse -- 4.4.2 Longitudinal -- 4.5 Two-Stream Effects (Electron Cloud and Ions) -- 4.5.1 Electron Cloud Build-Up in Positron/Hadron Machines -- 4.5.2 The Electron Cloud Instability -- 4.5.3 Mitigation and Suppression -- 4.6 Beam-Beam Effects -- 4.6.1 Introduction -- 4.6.2 Beam-Beam Force -- 4.6.2.1 Elliptical Beams -- 4.6.2.2 Round Beams -- 4.6.3 Incoherent Effects: Single Particle Effects -- 4.6.3.1 Beam-Beam Parameter -- 4.6.3.2 Non-linear Effects -- 4.6.3.3 Beam Stability -- 4.6.3.4 Beam-Beam Limit -- 4.6.4 Studies of Head-on Collisions at the LHC -- 4.6.4.1 PACMAN Bunches -- 4.6.5 Head-on Beam-Beam Tune Shift -- 4.6.6 Effect of Number of Head-on Collisions -- 4.6.7 Crossing Angle and Long Range Interactions -- 4.6.7.1 Long-Range Beam-Beam Effects -- 4.6.7.2 Opposite Sign Tune Shift -- 4.6.7.3 Strength of Long-Range Interactions -- 4.6.7.4 Footprint for Long-Range Interactions -- 4.6.8 Studies of Long Range Interactions in the LHC -- 4.6.8.1 Dynamic Aperture Reduction Due to Long-Range Interactions -- 4.6.8.2 Beam-Beam Induced Orbit Effects -- 4.6.9 Coherent Beam-Beam Effects -- 4.6.9.1 Coherent Beam-Beam Modes -- 4.6.10 Compensation of Beam-Beam Effects -- 4.6.10.1 Electron Lenses -- 4.6.10.2 Electrostatic Wire -- 4.6.10.3 Möbius Scheme -- 4.7 Numerical Modelling -- 4.7.1 The Electromagnetic Problem -- 4.7.2 Beam Dynamics -- References -- 5 Interactions of Beams with Surroundings -- 5.1 The Interactions of High Energy Particles with Matter -- 5.1.1 Basic Physical Processes in Radiation Transport Through Matter -- 5.1.2 Simulation Tools -- 5.1.2.1 FLUKA -- 5.1.2.2 GEANT4 -- 5.1.2.3 MARS15.
5.1.2.4 MCNP -- 5.1.2.5 PHITS -- 5.1.2.6 Simulation Uncertainties -- 5.1.3 Practical Shielding Considerations -- 5.1.3.1 Radiation Attenuation -- 5.1.3.2 Shielding of Electromagnetic Showers -- 5.1.3.3 Shielding of Neutrons -- 5.2 Lifetimes, Intensity and Luminosity -- 5.2.1 Beam-Gas -- 5.2.2 Thermal Photons -- 5.2.3 Luminosity Lifetime -- 5.3 Experimental Conditions -- 5.3.1 Sources of Detector Background and Detector Performance -- 5.3.2 Synchrotron Radiation Background -- References -- 6 Design and Principles of Synchrotrons and Circular Colliders -- 6.1 Beam Optics and Lattice Design in High Energy Particle Accelerators -- 6.1.1 Geometry of the Ring -- 6.1.2 Lattice Design -- 6.2 Lattice Insertions -- 6.2.1 Low Beta Insertions -- 6.2.2 Injection and Extraction Insertions -- 6.2.3 Dispersion Suppressors -- 6.2.3.1 The "Straightforward" Way: Dispersion Suppression Using Quadrupole Magnets -- 6.2.3.2 The "Clever" Way: Half Bend Schemes -- 6.2.3.3 The "Missing Bend" Dispersion Suppressor Scheme -- 6.3 Injection and Extraction Techniques -- 6.3.1 Fast Injection -- 6.3.2 Slip-Stacking Injection -- 6.3.3 H− Charge-Exchange Injection -- 6.3.4 Lepton Accumulation Injection -- 6.3.5 Fast Extraction -- 6.3.6 Resonant Extraction -- 6.3.7 Continuous Transfer Extraction -- 6.3.8 Resonant Continuous Transfer Extraction -- 6.3.9 Other Injection and Extraction Techniques -- 6.4 Concept of Luminosity -- 6.4.1 Introduction -- 6.4.2 Computation of Luminosity -- 6.4.3 Luminosity with Correction Factors -- 6.4.3.1 Effect of Crossing Angle and Transverse Offset -- 6.4.3.2 Hour Glass Effect -- 6.4.3.3 Crabbed Waist Scheme -- 6.4.4 Integrated Luminosity and Event Pile Up -- 6.4.5 Measurement and Calibration of Luminosity -- 6.4.6 Absolute Luminosity: Lepton Colliders -- 6.4.7 Absolute Luminosity: Hadron Colliders.
6.4.7.1 Measurement by Profile Monitors and Beam Displacement -- 6.4.7.2 Absolute Measurement with Optical Theorem -- 6.4.8 Luminosity in Linear Colliders -- 6.4.8.1 Disruption and Luminosity Enhancement Factor -- 6.4.8.2 Beamstrahlung -- 6.5 Synchrotron Radiation and Damping -- 6.5.1 Basic Properties of Synchrotron Radiation -- 6.5.2 Radiation Damping -- 6.6 Computer Codes for Beam Dynamics -- 6.6.1 Introduction -- 6.6.2 Classes of Beam Dynamics Codes -- 6.6.3 Optics Codes -- 6.6.4 Single Particle Tracking Codes -- 6.6.4.1 Techniques -- 6.6.4.2 Analysis of Tracking Data -- 6.6.5 Multi Particle Tracking Codes -- 6.6.6 Machine Protection -- 6.7 Electron-Positron Circular Colliders -- 6.7.1 Physics of Electron-Positron Rings -- 6.7.2 Design of Colliders -- 6.7.3 Large Piwinski Angle and Crab Waist Collision Scheme -- 6.8 Hadron Colliders and Electron-Proton Colliders -- 6.8.1 Principles of Hadron Colliders -- 6.8.2 Proton-Antiproton Colliders -- 6.8.3 Proton-Proton Colliders -- 6.8.4 Electron-Proton Colliders -- 6.9 Ion Colliders -- 6.10 Beam Cooling -- 6.10.1 Introduction -- 6.10.2 Beam Cooling Techniques -- 6.10.2.1 Radiation Cooling -- 6.10.2.2 Microwave Stochastic Cooling -- 6.10.2.3 Electron Cooling -- 6.10.2.4 Laser Cooling -- 6.10.2.5 Ionisation Cooling -- 6.10.2.6 Cooling of Particles in Traps -- References -- 7 Design and Principles of Linear Accelerators and Colliders -- 7.1 General Introduction on Linear Accelerators -- 7.2 High Luminosity Issues and Beam-Beam Effects -- 7.3 CLIC &amp -- ILC -- 7.3.1 Introduction -- 7.3.2 ILC Design -- 7.3.3 CLIC Design -- 7.3.4 On-Going or Recent R&amp -- D -- 7.3.4.1 ILC Specific -- 7.3.4.2 CLIC Specific -- 7.3.5 Common Issues and Prospects -- 7.4 Accelerating Structures Design and Efficiency -- 7.4.1 Normal Conducting Accelerating Structures -- 7.4.2 Superconducting Accelerating Structures.
7.5 Wakefields and Emittance Preservation.
author_facet Myers, Stephen.
Schopper, Herwig.
author_variant s m sm
author2 Schopper, Herwig.
author2_variant h s hs
author2_role TeilnehmendeR
author_sort Myers, Stephen.
title Particle Physics Reference Library : Volume 3: Accelerators and Colliders.
title_sub Volume 3: Accelerators and Colliders.
title_full Particle Physics Reference Library : Volume 3: Accelerators and Colliders.
title_fullStr Particle Physics Reference Library : Volume 3: Accelerators and Colliders.
title_full_unstemmed Particle Physics Reference Library : Volume 3: Accelerators and Colliders.
title_auth Particle Physics Reference Library : Volume 3: Accelerators and Colliders.
title_new Particle Physics Reference Library :
title_sort particle physics reference library : volume 3: accelerators and colliders.
publisher Springer International Publishing AG,
publishDate 2020
physical 1 online resource (867 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- About the Editors -- 1 Accelerators, Colliders and Their Application -- 1.1 Why Build Accelerators? -- 1.2 Types and Evolution of Accelerators -- 1.2.1 Early Accelerators -- 1.2.2 The Ray Transformer -- 1.2.3 Repetitive Acceleration -- 1.2.4 Linear Accelerators -- 1.2.5 Cyclotrons -- 1.2.6 The Synchrotron -- 1.2.7 Phase Stability -- References -- 2 Beam Dynamics -- 2.1 Linear Transverse Beam Dynamics -- 2.1.1 Co-ordinate System -- 2.1.2 Displacement and Divergence -- 2.1.3 Bending Magnets and Magnetic Rigidity -- 2.1.4 Particle Trajectory in a Dipole Bending Magnet -- 2.1.5 Weak Focusing -- 2.1.6 Alternating Gradient Focusing -- 2.1.7 Quadrupole Magnets -- 2.1.8 The Equation of Motion -- 2.1.9 Matrix Description -- 2.1.10 Transport Matrices for Lattice Components -- 2.1.11 The Betatron Envelopes -- 2.2 Coupling -- 2.2.1 Coupling Fields -- 2.2.2 Qualitative Treatment of Coupling -- 2.3 Liouville's Theorem -- 2.3.1 Chains of Accelerators -- 2.3.2 Exceptions to Liouville's Theorem -- 2.4 Momentum Dependent Transverse Motion -- 2.4.1 Dispersion -- 2.4.2 Chromaticity -- 2.5 Longitudinal Motion -- 2.5.1 Stability of the Lagging Particle -- 2.5.2 Transition Energy -- 2.5.3 Synchrotron Motion -- 2.5.4 Stationary Buckets -- References -- 3 Non-linear Dynamics in Accelerators -- 3.1 Introduction -- 3.1.1 Motivation -- 3.1.2 Single Particle Dynamics -- 3.1.3 Layout of the Treatment -- 3.2 Variables -- 3.2.1 Trace Space and Phase Space -- 3.2.2 Curved Coordinate System -- 3.3 Sources of Non-linearities -- 3.3.1 Non-linear Machine Elements -- 3.3.1.1 Unwanted Non-linear Machine Elements -- 3.3.1.2 Wanted Non-linear Machine Elements -- 3.3.2 Beam-Beam Effects and Space Charge -- 3.4 Map Based Techniques -- 3.5 Linear Normal Forms -- 3.5.1 Sequence of Maps -- 3.5.2 Analysis of the One Turn Map -- 3.5.3 Action-Angle Variables.
3.5.4 Beam Emittance -- 3.6 Techniques and Tools to Evaluate and Correct Non-linear Effects -- 3.6.1 Particle Tracking -- 3.6.1.1 Symplecticity -- 3.6.2 Approximations and Tools -- 3.6.3 Taylor and Power Maps -- 3.6.3.1 Taylor Maps -- 3.6.3.2 Thick and Thin Lenses -- 3.6.3.3 Symplectic Matrices and Symplectic Integration -- 3.6.3.4 Comparison Symplectic Versus Non-symplectic Integration -- 3.7 Hamiltonian Treatment of Electro-Magnetic Fields -- 3.7.1 Lagrangian of Electro-Magnetic Fields -- 3.7.1.1 Lagrangian and Hamiltonian -- 3.7.2 Hamiltonian with Electro-Magnetic Fields -- 3.7.3 Hamiltonian Used for Accelerator Physics -- 3.7.3.1 Lie Maps and Transformations -- 3.7.3.2 Concatenation of Lie Transformations -- 3.7.4 Analysis Techniques: Poincare Surface of Section -- 3.7.5 Analysis Techniques: Normal Forms -- 3.7.5.1 Normal Form Transformation: Linear Case -- 3.7.5.2 Normal Form Transformation: Non-linear Case -- 3.7.6 Truncated Power Series Algebra Based on Automatic Differentiation -- 3.7.6.1 Automatic Differentiation: Concept -- 3.7.6.2 Automatic Differentiation: The Algebra -- 3.7.6.3 Automatic Differentiation: The Application -- 3.7.6.4 Automatic Differentiation: Higher Orders -- 3.7.6.5 Automatic Differentiation: More Variables -- 3.7.6.6 Differential Algebra: Applications to Accelerators -- 3.7.6.7 Differential Algebra: Simple Example -- 3.8 Beam Dynamics with Non-linearities -- 3.8.1 Amplitude Detuning -- 3.8.1.1 Amplitude Detuning due to Non-linearities in Machine Elements -- 3.8.1.2 Amplitude Detuning due to Beam-Beam Effects -- 3.8.1.3 Phase Space Structure -- 3.8.2 Non-linear Resonances -- 3.8.2.1 Resonance Condition in One Dimension -- 3.8.2.2 Driving Terms -- 3.8.3 Chromaticity and Chromaticity Correction -- 3.8.4 Dynamic Aperture -- 3.8.4.1 Long Term Stability and Chaotic Behaviour -- 3.8.4.2 Practical Implications -- References.
4 Impedance and Collective Effects -- 4.1 Space Charge -- 4.1.1 Direct Space Charge -- 4.1.2 Indirect Space Charge -- 4.2 Wake Fields and Impedances -- 4.3 Coherent Instabilities -- 4.3.1 Longitudinal -- 4.3.2 Transverse -- 4.4 Landau Damping -- 4.4.1 Transverse -- 4.4.2 Longitudinal -- 4.5 Two-Stream Effects (Electron Cloud and Ions) -- 4.5.1 Electron Cloud Build-Up in Positron/Hadron Machines -- 4.5.2 The Electron Cloud Instability -- 4.5.3 Mitigation and Suppression -- 4.6 Beam-Beam Effects -- 4.6.1 Introduction -- 4.6.2 Beam-Beam Force -- 4.6.2.1 Elliptical Beams -- 4.6.2.2 Round Beams -- 4.6.3 Incoherent Effects: Single Particle Effects -- 4.6.3.1 Beam-Beam Parameter -- 4.6.3.2 Non-linear Effects -- 4.6.3.3 Beam Stability -- 4.6.3.4 Beam-Beam Limit -- 4.6.4 Studies of Head-on Collisions at the LHC -- 4.6.4.1 PACMAN Bunches -- 4.6.5 Head-on Beam-Beam Tune Shift -- 4.6.6 Effect of Number of Head-on Collisions -- 4.6.7 Crossing Angle and Long Range Interactions -- 4.6.7.1 Long-Range Beam-Beam Effects -- 4.6.7.2 Opposite Sign Tune Shift -- 4.6.7.3 Strength of Long-Range Interactions -- 4.6.7.4 Footprint for Long-Range Interactions -- 4.6.8 Studies of Long Range Interactions in the LHC -- 4.6.8.1 Dynamic Aperture Reduction Due to Long-Range Interactions -- 4.6.8.2 Beam-Beam Induced Orbit Effects -- 4.6.9 Coherent Beam-Beam Effects -- 4.6.9.1 Coherent Beam-Beam Modes -- 4.6.10 Compensation of Beam-Beam Effects -- 4.6.10.1 Electron Lenses -- 4.6.10.2 Electrostatic Wire -- 4.6.10.3 Möbius Scheme -- 4.7 Numerical Modelling -- 4.7.1 The Electromagnetic Problem -- 4.7.2 Beam Dynamics -- References -- 5 Interactions of Beams with Surroundings -- 5.1 The Interactions of High Energy Particles with Matter -- 5.1.1 Basic Physical Processes in Radiation Transport Through Matter -- 5.1.2 Simulation Tools -- 5.1.2.1 FLUKA -- 5.1.2.2 GEANT4 -- 5.1.2.3 MARS15.
5.1.2.4 MCNP -- 5.1.2.5 PHITS -- 5.1.2.6 Simulation Uncertainties -- 5.1.3 Practical Shielding Considerations -- 5.1.3.1 Radiation Attenuation -- 5.1.3.2 Shielding of Electromagnetic Showers -- 5.1.3.3 Shielding of Neutrons -- 5.2 Lifetimes, Intensity and Luminosity -- 5.2.1 Beam-Gas -- 5.2.2 Thermal Photons -- 5.2.3 Luminosity Lifetime -- 5.3 Experimental Conditions -- 5.3.1 Sources of Detector Background and Detector Performance -- 5.3.2 Synchrotron Radiation Background -- References -- 6 Design and Principles of Synchrotrons and Circular Colliders -- 6.1 Beam Optics and Lattice Design in High Energy Particle Accelerators -- 6.1.1 Geometry of the Ring -- 6.1.2 Lattice Design -- 6.2 Lattice Insertions -- 6.2.1 Low Beta Insertions -- 6.2.2 Injection and Extraction Insertions -- 6.2.3 Dispersion Suppressors -- 6.2.3.1 The "Straightforward" Way: Dispersion Suppression Using Quadrupole Magnets -- 6.2.3.2 The "Clever" Way: Half Bend Schemes -- 6.2.3.3 The "Missing Bend" Dispersion Suppressor Scheme -- 6.3 Injection and Extraction Techniques -- 6.3.1 Fast Injection -- 6.3.2 Slip-Stacking Injection -- 6.3.3 H− Charge-Exchange Injection -- 6.3.4 Lepton Accumulation Injection -- 6.3.5 Fast Extraction -- 6.3.6 Resonant Extraction -- 6.3.7 Continuous Transfer Extraction -- 6.3.8 Resonant Continuous Transfer Extraction -- 6.3.9 Other Injection and Extraction Techniques -- 6.4 Concept of Luminosity -- 6.4.1 Introduction -- 6.4.2 Computation of Luminosity -- 6.4.3 Luminosity with Correction Factors -- 6.4.3.1 Effect of Crossing Angle and Transverse Offset -- 6.4.3.2 Hour Glass Effect -- 6.4.3.3 Crabbed Waist Scheme -- 6.4.4 Integrated Luminosity and Event Pile Up -- 6.4.5 Measurement and Calibration of Luminosity -- 6.4.6 Absolute Luminosity: Lepton Colliders -- 6.4.7 Absolute Luminosity: Hadron Colliders.
6.4.7.1 Measurement by Profile Monitors and Beam Displacement -- 6.4.7.2 Absolute Measurement with Optical Theorem -- 6.4.8 Luminosity in Linear Colliders -- 6.4.8.1 Disruption and Luminosity Enhancement Factor -- 6.4.8.2 Beamstrahlung -- 6.5 Synchrotron Radiation and Damping -- 6.5.1 Basic Properties of Synchrotron Radiation -- 6.5.2 Radiation Damping -- 6.6 Computer Codes for Beam Dynamics -- 6.6.1 Introduction -- 6.6.2 Classes of Beam Dynamics Codes -- 6.6.3 Optics Codes -- 6.6.4 Single Particle Tracking Codes -- 6.6.4.1 Techniques -- 6.6.4.2 Analysis of Tracking Data -- 6.6.5 Multi Particle Tracking Codes -- 6.6.6 Machine Protection -- 6.7 Electron-Positron Circular Colliders -- 6.7.1 Physics of Electron-Positron Rings -- 6.7.2 Design of Colliders -- 6.7.3 Large Piwinski Angle and Crab Waist Collision Scheme -- 6.8 Hadron Colliders and Electron-Proton Colliders -- 6.8.1 Principles of Hadron Colliders -- 6.8.2 Proton-Antiproton Colliders -- 6.8.3 Proton-Proton Colliders -- 6.8.4 Electron-Proton Colliders -- 6.9 Ion Colliders -- 6.10 Beam Cooling -- 6.10.1 Introduction -- 6.10.2 Beam Cooling Techniques -- 6.10.2.1 Radiation Cooling -- 6.10.2.2 Microwave Stochastic Cooling -- 6.10.2.3 Electron Cooling -- 6.10.2.4 Laser Cooling -- 6.10.2.5 Ionisation Cooling -- 6.10.2.6 Cooling of Particles in Traps -- References -- 7 Design and Principles of Linear Accelerators and Colliders -- 7.1 General Introduction on Linear Accelerators -- 7.2 High Luminosity Issues and Beam-Beam Effects -- 7.3 CLIC &amp -- ILC -- 7.3.1 Introduction -- 7.3.2 ILC Design -- 7.3.3 CLIC Design -- 7.3.4 On-Going or Recent R&amp -- D -- 7.3.4.1 ILC Specific -- 7.3.4.2 CLIC Specific -- 7.3.5 Common Issues and Prospects -- 7.4 Accelerating Structures Design and Efficiency -- 7.4.1 Normal Conducting Accelerating Structures -- 7.4.2 Superconducting Accelerating Structures.
7.5 Wakefields and Emittance Preservation.
isbn 9783030342456
9783030342449
callnumber-first Q - Science
callnumber-subject QC - Physics
callnumber-label QC787
callnumber-sort QC 3787 P3
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6210990
illustrated Not Illustrated
oclc_num 1158221836
work_keys_str_mv AT myersstephen particlephysicsreferencelibraryvolume3acceleratorsandcolliders
AT schopperherwig particlephysicsreferencelibraryvolume3acceleratorsandcolliders
status_str n
ids_txt_mv (MiAaPQ)5006210990
(Au-PeEL)EBL6210990
(OCoLC)1158221836
carrierType_str_mv cr
is_hierarchy_title Particle Physics Reference Library : Volume 3: Accelerators and Colliders.
author2_original_writing_str_mv noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331056263725056
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10981nam a22004453i 4500</leader><controlfield tag="001">5006210990</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073834.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2020 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030342456</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783030342449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5006210990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6210990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1158221836</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC787.P3</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Myers, Stephen.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Particle Physics Reference Library :</subfield><subfield code="b">Volume 3: Accelerators and Colliders.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2020.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (867 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- About the Editors -- 1 Accelerators, Colliders and Their Application -- 1.1 Why Build Accelerators? -- 1.2 Types and Evolution of Accelerators -- 1.2.1 Early Accelerators -- 1.2.2 The Ray Transformer -- 1.2.3 Repetitive Acceleration -- 1.2.4 Linear Accelerators -- 1.2.5 Cyclotrons -- 1.2.6 The Synchrotron -- 1.2.7 Phase Stability -- References -- 2 Beam Dynamics -- 2.1 Linear Transverse Beam Dynamics -- 2.1.1 Co-ordinate System -- 2.1.2 Displacement and Divergence -- 2.1.3 Bending Magnets and Magnetic Rigidity -- 2.1.4 Particle Trajectory in a Dipole Bending Magnet -- 2.1.5 Weak Focusing -- 2.1.6 Alternating Gradient Focusing -- 2.1.7 Quadrupole Magnets -- 2.1.8 The Equation of Motion -- 2.1.9 Matrix Description -- 2.1.10 Transport Matrices for Lattice Components -- 2.1.11 The Betatron Envelopes -- 2.2 Coupling -- 2.2.1 Coupling Fields -- 2.2.2 Qualitative Treatment of Coupling -- 2.3 Liouville's Theorem -- 2.3.1 Chains of Accelerators -- 2.3.2 Exceptions to Liouville's Theorem -- 2.4 Momentum Dependent Transverse Motion -- 2.4.1 Dispersion -- 2.4.2 Chromaticity -- 2.5 Longitudinal Motion -- 2.5.1 Stability of the Lagging Particle -- 2.5.2 Transition Energy -- 2.5.3 Synchrotron Motion -- 2.5.4 Stationary Buckets -- References -- 3 Non-linear Dynamics in Accelerators -- 3.1 Introduction -- 3.1.1 Motivation -- 3.1.2 Single Particle Dynamics -- 3.1.3 Layout of the Treatment -- 3.2 Variables -- 3.2.1 Trace Space and Phase Space -- 3.2.2 Curved Coordinate System -- 3.3 Sources of Non-linearities -- 3.3.1 Non-linear Machine Elements -- 3.3.1.1 Unwanted Non-linear Machine Elements -- 3.3.1.2 Wanted Non-linear Machine Elements -- 3.3.2 Beam-Beam Effects and Space Charge -- 3.4 Map Based Techniques -- 3.5 Linear Normal Forms -- 3.5.1 Sequence of Maps -- 3.5.2 Analysis of the One Turn Map -- 3.5.3 Action-Angle Variables.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5.4 Beam Emittance -- 3.6 Techniques and Tools to Evaluate and Correct Non-linear Effects -- 3.6.1 Particle Tracking -- 3.6.1.1 Symplecticity -- 3.6.2 Approximations and Tools -- 3.6.3 Taylor and Power Maps -- 3.6.3.1 Taylor Maps -- 3.6.3.2 Thick and Thin Lenses -- 3.6.3.3 Symplectic Matrices and Symplectic Integration -- 3.6.3.4 Comparison Symplectic Versus Non-symplectic Integration -- 3.7 Hamiltonian Treatment of Electro-Magnetic Fields -- 3.7.1 Lagrangian of Electro-Magnetic Fields -- 3.7.1.1 Lagrangian and Hamiltonian -- 3.7.2 Hamiltonian with Electro-Magnetic Fields -- 3.7.3 Hamiltonian Used for Accelerator Physics -- 3.7.3.1 Lie Maps and Transformations -- 3.7.3.2 Concatenation of Lie Transformations -- 3.7.4 Analysis Techniques: Poincare Surface of Section -- 3.7.5 Analysis Techniques: Normal Forms -- 3.7.5.1 Normal Form Transformation: Linear Case -- 3.7.5.2 Normal Form Transformation: Non-linear Case -- 3.7.6 Truncated Power Series Algebra Based on Automatic Differentiation -- 3.7.6.1 Automatic Differentiation: Concept -- 3.7.6.2 Automatic Differentiation: The Algebra -- 3.7.6.3 Automatic Differentiation: The Application -- 3.7.6.4 Automatic Differentiation: Higher Orders -- 3.7.6.5 Automatic Differentiation: More Variables -- 3.7.6.6 Differential Algebra: Applications to Accelerators -- 3.7.6.7 Differential Algebra: Simple Example -- 3.8 Beam Dynamics with Non-linearities -- 3.8.1 Amplitude Detuning -- 3.8.1.1 Amplitude Detuning due to Non-linearities in Machine Elements -- 3.8.1.2 Amplitude Detuning due to Beam-Beam Effects -- 3.8.1.3 Phase Space Structure -- 3.8.2 Non-linear Resonances -- 3.8.2.1 Resonance Condition in One Dimension -- 3.8.2.2 Driving Terms -- 3.8.3 Chromaticity and Chromaticity Correction -- 3.8.4 Dynamic Aperture -- 3.8.4.1 Long Term Stability and Chaotic Behaviour -- 3.8.4.2 Practical Implications -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4 Impedance and Collective Effects -- 4.1 Space Charge -- 4.1.1 Direct Space Charge -- 4.1.2 Indirect Space Charge -- 4.2 Wake Fields and Impedances -- 4.3 Coherent Instabilities -- 4.3.1 Longitudinal -- 4.3.2 Transverse -- 4.4 Landau Damping -- 4.4.1 Transverse -- 4.4.2 Longitudinal -- 4.5 Two-Stream Effects (Electron Cloud and Ions) -- 4.5.1 Electron Cloud Build-Up in Positron/Hadron Machines -- 4.5.2 The Electron Cloud Instability -- 4.5.3 Mitigation and Suppression -- 4.6 Beam-Beam Effects -- 4.6.1 Introduction -- 4.6.2 Beam-Beam Force -- 4.6.2.1 Elliptical Beams -- 4.6.2.2 Round Beams -- 4.6.3 Incoherent Effects: Single Particle Effects -- 4.6.3.1 Beam-Beam Parameter -- 4.6.3.2 Non-linear Effects -- 4.6.3.3 Beam Stability -- 4.6.3.4 Beam-Beam Limit -- 4.6.4 Studies of Head-on Collisions at the LHC -- 4.6.4.1 PACMAN Bunches -- 4.6.5 Head-on Beam-Beam Tune Shift -- 4.6.6 Effect of Number of Head-on Collisions -- 4.6.7 Crossing Angle and Long Range Interactions -- 4.6.7.1 Long-Range Beam-Beam Effects -- 4.6.7.2 Opposite Sign Tune Shift -- 4.6.7.3 Strength of Long-Range Interactions -- 4.6.7.4 Footprint for Long-Range Interactions -- 4.6.8 Studies of Long Range Interactions in the LHC -- 4.6.8.1 Dynamic Aperture Reduction Due to Long-Range Interactions -- 4.6.8.2 Beam-Beam Induced Orbit Effects -- 4.6.9 Coherent Beam-Beam Effects -- 4.6.9.1 Coherent Beam-Beam Modes -- 4.6.10 Compensation of Beam-Beam Effects -- 4.6.10.1 Electron Lenses -- 4.6.10.2 Electrostatic Wire -- 4.6.10.3 Möbius Scheme -- 4.7 Numerical Modelling -- 4.7.1 The Electromagnetic Problem -- 4.7.2 Beam Dynamics -- References -- 5 Interactions of Beams with Surroundings -- 5.1 The Interactions of High Energy Particles with Matter -- 5.1.1 Basic Physical Processes in Radiation Transport Through Matter -- 5.1.2 Simulation Tools -- 5.1.2.1 FLUKA -- 5.1.2.2 GEANT4 -- 5.1.2.3 MARS15.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.1.2.4 MCNP -- 5.1.2.5 PHITS -- 5.1.2.6 Simulation Uncertainties -- 5.1.3 Practical Shielding Considerations -- 5.1.3.1 Radiation Attenuation -- 5.1.3.2 Shielding of Electromagnetic Showers -- 5.1.3.3 Shielding of Neutrons -- 5.2 Lifetimes, Intensity and Luminosity -- 5.2.1 Beam-Gas -- 5.2.2 Thermal Photons -- 5.2.3 Luminosity Lifetime -- 5.3 Experimental Conditions -- 5.3.1 Sources of Detector Background and Detector Performance -- 5.3.2 Synchrotron Radiation Background -- References -- 6 Design and Principles of Synchrotrons and Circular Colliders -- 6.1 Beam Optics and Lattice Design in High Energy Particle Accelerators -- 6.1.1 Geometry of the Ring -- 6.1.2 Lattice Design -- 6.2 Lattice Insertions -- 6.2.1 Low Beta Insertions -- 6.2.2 Injection and Extraction Insertions -- 6.2.3 Dispersion Suppressors -- 6.2.3.1 The "Straightforward" Way: Dispersion Suppression Using Quadrupole Magnets -- 6.2.3.2 The "Clever" Way: Half Bend Schemes -- 6.2.3.3 The "Missing Bend" Dispersion Suppressor Scheme -- 6.3 Injection and Extraction Techniques -- 6.3.1 Fast Injection -- 6.3.2 Slip-Stacking Injection -- 6.3.3 H− Charge-Exchange Injection -- 6.3.4 Lepton Accumulation Injection -- 6.3.5 Fast Extraction -- 6.3.6 Resonant Extraction -- 6.3.7 Continuous Transfer Extraction -- 6.3.8 Resonant Continuous Transfer Extraction -- 6.3.9 Other Injection and Extraction Techniques -- 6.4 Concept of Luminosity -- 6.4.1 Introduction -- 6.4.2 Computation of Luminosity -- 6.4.3 Luminosity with Correction Factors -- 6.4.3.1 Effect of Crossing Angle and Transverse Offset -- 6.4.3.2 Hour Glass Effect -- 6.4.3.3 Crabbed Waist Scheme -- 6.4.4 Integrated Luminosity and Event Pile Up -- 6.4.5 Measurement and Calibration of Luminosity -- 6.4.6 Absolute Luminosity: Lepton Colliders -- 6.4.7 Absolute Luminosity: Hadron Colliders.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.4.7.1 Measurement by Profile Monitors and Beam Displacement -- 6.4.7.2 Absolute Measurement with Optical Theorem -- 6.4.8 Luminosity in Linear Colliders -- 6.4.8.1 Disruption and Luminosity Enhancement Factor -- 6.4.8.2 Beamstrahlung -- 6.5 Synchrotron Radiation and Damping -- 6.5.1 Basic Properties of Synchrotron Radiation -- 6.5.2 Radiation Damping -- 6.6 Computer Codes for Beam Dynamics -- 6.6.1 Introduction -- 6.6.2 Classes of Beam Dynamics Codes -- 6.6.3 Optics Codes -- 6.6.4 Single Particle Tracking Codes -- 6.6.4.1 Techniques -- 6.6.4.2 Analysis of Tracking Data -- 6.6.5 Multi Particle Tracking Codes -- 6.6.6 Machine Protection -- 6.7 Electron-Positron Circular Colliders -- 6.7.1 Physics of Electron-Positron Rings -- 6.7.2 Design of Colliders -- 6.7.3 Large Piwinski Angle and Crab Waist Collision Scheme -- 6.8 Hadron Colliders and Electron-Proton Colliders -- 6.8.1 Principles of Hadron Colliders -- 6.8.2 Proton-Antiproton Colliders -- 6.8.3 Proton-Proton Colliders -- 6.8.4 Electron-Proton Colliders -- 6.9 Ion Colliders -- 6.10 Beam Cooling -- 6.10.1 Introduction -- 6.10.2 Beam Cooling Techniques -- 6.10.2.1 Radiation Cooling -- 6.10.2.2 Microwave Stochastic Cooling -- 6.10.2.3 Electron Cooling -- 6.10.2.4 Laser Cooling -- 6.10.2.5 Ionisation Cooling -- 6.10.2.6 Cooling of Particles in Traps -- References -- 7 Design and Principles of Linear Accelerators and Colliders -- 7.1 General Introduction on Linear Accelerators -- 7.2 High Luminosity Issues and Beam-Beam Effects -- 7.3 CLIC &amp;amp -- ILC -- 7.3.1 Introduction -- 7.3.2 ILC Design -- 7.3.3 CLIC Design -- 7.3.4 On-Going or Recent R&amp;amp -- D -- 7.3.4.1 ILC Specific -- 7.3.4.2 CLIC Specific -- 7.3.5 Common Issues and Prospects -- 7.4 Accelerating Structures Design and Efficiency -- 7.4.1 Normal Conducting Accelerating Structures -- 7.4.2 Superconducting Accelerating Structures.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.5 Wakefields and Emittance Preservation.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schopper, Herwig.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Myers, Stephen</subfield><subfield code="t">Particle Physics Reference Library</subfield><subfield code="d">Cham : Springer International Publishing AG,c2020</subfield><subfield code="z">9783030342449</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=6210990</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>